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PREFACE

In recent years there has been a considerable amount of research in Internal Ballistics,
much of which was done as a result of recommendations of the Scientific Advisory Council
of the Ministry of Supply. On the recommendation of its Ballistics Committee the Council
decided to sponsor the production of a treatise co-ordinating this new work in its application
to guns and giving an up-to-date account of the subject.

An editorial panel was formed, the members being :—

Colonel F. R. W. Hunt, M.A., F.Inst.P. (Chairman)
Brigadier G. H. Hinds, O.B.E., B.Sc.

Dr. C. A. Clemmow, M.A., Sc.D.

Professor C. J. Tranter, M.A. (Secretary)

This panel was entrusted with the work of preparing and editing the text and reported
progress periodically to the Ballistics Committee. Responsibility for the project was
subsequently assumed by the Weapon Research Committee who re-emphasised the importance
of the work and initiated steps to expedite its completion.

The treatise is a collective work and the Scientific Advisory Council tender their thanks
to the authors for their contributions. They are (in alphabetical order) : —

Mr. C. M. Balfour, M.A., AM.I.C.E., Armament Research Establishment :
Chapter XIII in part.

Dr. C. A. Clemmow, M.A., Sc.D., Armament Research Establishment:
Chapters X and XI in part.

Dr. J. Corner, M.A., Ph.D., F.R.1.C., Armament Research Establishment:
Chapter III and Appendix I.

Mr. H. A. Flint, B.Sc., A.M.I.Mech.E., Armament Research Establishment:
Chapter XIII in part.

Mr. A. W. Goldie, M.A., University College, Nottingham
(formerly Armament Research Establishment):

Chapter IX in part.

Mr. J. B. Goode, B.A., Armament Research Establishment:
Chapter XII and part of Chapter XIII.

Mr. E. P. Hicks, M.A., Armament Research Establishment:
Appendix IIL

Brigadier G. H. Hinds, O.B.E., B.Sc., Director of Weapon Research:
Chapters XIV and XVI and part of Chapter XI.

Colonel F. R. W. Hunt, M.A., F.Inst.P., Vickers-Armstrongs Ltd.:
Chapter VIII and parts of Chapters I, V, VII, IX, X, XI and XII.
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PREFACE

Major J. C. S. Hymans, M.A., F.F.A., Consulting Statistician and Actuary
(formerly Royal Artillery):
Chapter XV.

Dr. H. H. M. Pike, B.Sc., Ph.D., Armament Research Establishment:
Chapter V in part.

Mr. C. K. Thornhill, M.A., Armament Research Establishment:
Chapter VII in part and Appendix II.

Professor C. J. Tranter, M.A., Military College of Science:
Chapters II, 1V, VI and part of Chapter XIII.

Lt. Commander J. R. D. Walker, B.A., V.R.D., RIN.V.R,, Vickers-Armstrongs Ltd.:
Chapter XIII in part.

Professor J. R. H. Whiston, O.B.E., M.A., B.Sc., Military College of Science:
Chapter I in part.

In particular the Council wish to express their appreciation of the work done by Colonel
Hunt ; not only did he, as Chairman of the Editorial Panel, do the major part of the work
of preparing the various contributions for the press, but he himself contributed considerably
more than any of the other joint authors. The Council also wish to express their appreciation
of the work done by the late Professor C. E. Wright, M.Sc., of the Military College of Science,
during the early stages of preparation.

The first five chapters of the book are devoted to the chemical, thermal and ballistic
properties of propellants and two ballistic equations are derived relating to the mode and rate
of burning. The gun is introduced in Chapters VI and VII and the energy equation and the
equation of motion of the shot are deduced.

In Chapter VIII a solution of the ballistic equations for a linear law of burning is given,
while Chapter IX is devoted to other solutions of the same problem. Solutions for non-linear
law of burning are given in Chapter X. Chapter XI is devoted to a number of approximations
which are frequently used.

Chapters XII and XIII deal with the measurement of velocity and pressure and the subject
of cordite proof is treated in Chapter XIV. Chapter XV gives an outline of the application
of statistical methods to cordite production and proof ; Chapter XVI reviews the results of
recent experimental work in America, Germany and this country.

Papers dealing with the theory of leaking guns and the heating of a gun barrel are appended
and the book concludes with an extensive bibliography.

Many references are made to A.R.D. Reports, which are not published openly. Such
reports can generally be obtained on loan by applying to the Secretary, Ministry of Supply,
(T.P.A.3), Technical Information Bureau, Thames House, Millbank, London, S.W.1.

The book is published with the authority of the Chief Scientist, Ministry of Supply.

J. E. LENNARD-]JONES,
Chairman,
Scientific Advisory Council,
Ministry of Supply.
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EDITOR’'S FOREWORD

The compilation of a collective work is always a difficult task ; copy reaches the Editor’s
hands more or less at random, but it has to be moulded into the general scheme in the order
in which it is to appear. This, in turn, may incur much correspondence and discussion before
the copy is in the desired form. Our task has been made easier by the whole-hearted co-
operation of the principal authors, who have accepted our suggestions, sometimes for an
almost complete re-arrangement, and have also graciously submitted to cuts in their copy,
in order that the book shall be a unified work. We would like to add our thanks to those
of the Chairman of the Scientific Advisory Council for the consideration and help the
authors have given us.

While the book was in the press a new edition of Dr. Pike’s tables of thermochemical
data appeared. We investigated the effect of these new data on the numerical values of the
principal propellant constants cited in Chapter II and found that they were not appreciably
altered. We therefore decided not to alter the data already printed (which would have delayed
publication), but we have added a note wherever necessary calling attention to the transient
nature of these data.

Our thanks are due to the Military College of Science, the Armament Research Establish-
ment and particularly to Mr. W. G. Clare of the Directorate of Weapon Research of the
Ministry of Supply for the preparation of the drawings and diagrams. We also thank
Miss E. B. Dodimead and Mrs. M. C. Martin of Messrs. Vickers-Armstrongs Limited for
their very considerable help with the typescript, and Mrs. M. E. Pope of the Armament
Research Establishment for her valuable assistance with the bibliography.

Finally, discarding the editorial plural, I wish to express my thanks to my colleagues
on the Editorial Panel for their vigilant proof-reading and for their inspiration, encouragement
and great assistance throughout the compilation of the book.

F. R. W. Hunrt
Chairman, Editorial Panel.
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INTERNAL BALLISTICS

CHAPTER 1
INTRODUCTION—PROPELLANTS

Internal Ballistics is the branch of Applied Physics which deals with the ballistic properties
of propellants and the motion of the projectile in the gun. The scope of the subject has been
extended in the last few years to include the propulsion of rockets ; in this book only the older
application to guns is considered.

The history of the subject is so closely associated with the development of propellants,
that no better introduction could be given than a brief consideration of this development in its
relation to Internal Ballistics.

1.01. Early developments

The history of the subject begins with the use of gunpowder and although the actual
date of its first use as a propellant has never been accurately determined, it certainly appears
to be early in the fourteenth century. A manuscript compiled about 1320 which was in the
Asiatic Museum in Petrograd shows tubes firing both arrows and balls, whilst the illuminated
manuscript entitled ‘ De Officiis Regum,” written in 1325 and preserved in the library of
Christ Church, Oxford, shows a drawing of an elementary gun shaped like a bottle and
discharging a dart. Gunpowder was certainly used as a propellant by the English at the Battle
of Crecy in 1346.

Improvements in the manufacture of gunpowder followed in succeeding centuries, an
important one being in 1784 when the mill-cake was compressed before corning and sieving.
This greatly improved the regularity of burning. By the end of the eighteenth century the
composition of gunpowder had become fairly-well standardised at 75 per cent. saltpetre, 15 per
cent. charcoal and 10 per cent. sulphur.

The first recorded attempt to test powder was made by Bourne in 1578. He fired the
powder in a small metal cylinder with a heavy lid on a hinge. The lid lifted on firing and
was prevented from falling by a ratchet ; the angle to which it rose gave a measure of the
“ strength ” of the powder.

The earliest recorded attempts to measure the ballistics of the powder consisted of firing
at a series of elevations and measuring the range of the shot. These experiments were performed
early in the seventeenth century by Collado in Italy and by Master-Gunners Eldred and Nye
in England.

In 1742 Robins invented his ballistic pendulum and with it determined the muzzle velocity
of musket balls. From these and other experiments he made a number of deductions
concerning the pressure exerted by the propellant gases. His researches were recorded in his
book “ New Principles of Gunnery >’ (1742) and he was awarded the Copley Gold Medal of
the Royal Society for his work in 1747,

Robins’ researches were continued by Hutton at Woolwich in the years 1773 to 1791 with
a larger pendulum capable of receiving a one-pound ball and his results were generally
confirmed.

The first attempt to measure the pressure of propellant gases directly was made by Count
Rumford in America in 1792. He fired a gunpowder charge in a vertical éprouvette, the
mouth of which was closed by a loaded piston ; the load was adjusted until the piston just lifted.
From these experiments Rumford deduced a relation between pressure and density of the gases.

At the end of the eighteenth century ballisticians were able to calculate the relation between
pressure and shot-travel, using Rumford’s pressure-density relation and assuming that the

B 1



2 INTERNAL BALLISTICS

charge was completely burnt before the shot started to move. Integrating the pressure-shot-
travel curve enabled them to calculate the muzzle velocity and so to compare their results with
experimental determinations. No account was taken of cooling, in fact their ideas of the
temperature of the gases were extremely vague ; Robins, for example, thought that the
temperature was at least equal to that of red-hot iron, whereas Hutton estimated it to be at least
twice as hot.

The next important development was in 1839, in France, when Piobert enunciated his laws
of burning. Although these laws related to black powder, one of them, namely, that the burning
of the grain takes place in parallel layers, has been found to be applicable to modern propellants
and is still in use. Piobert also gave an approximate solution to the problem of the motion
of the gases in the bore, a problem which was originally treated by Lagrange during the time
of the French Revolution. He gave an approximate relation between the pressures on the
breech and on the base of the shot which is still in use.

In 1857 General Rodman of the American Army devised his *‘ Indentation’ pressure
gauge for the measurement of the pressure of the propellant gases. The pressure was
determined by the indentation made in a copper or lead plate by a piston, in contact with the
gases, which was wedge-shaped at its outer end. With this gauge he measured the maximum
pressure in a number of guns and also deduced a pressure-density relation in a closed vessel.
His observations led him to the problem of reducing the maximum pressure in a gun without
reducing the muzzle velocity and he was the first to suggest the proper shape for powder grains.
His first proposal was to compress the powder into perforated discs from one to two inches
thick and of a diameter to fit the bore. Burning was thus restricted in the early stages and a
greater volume of gas was evolved from the increasing surfaces of the perforations in the later
stages, when the space behind the projectile was greater. Subsequently he used pierced
hexagonal prisms and these ‘* prismatic powders ”’ were speedily adopted in Europe.

The crusher gauge for measuring pressure was invented by Noble in 1860. With this,
he and Abel experimented in a closed vessel and deduced the now-famous law of Noble and
Abel relating pressure and density at constant volume.

Although Joule made his famous discovery of the mechanical equivalent of heat in 1843,
its application to ballistics did not appear until 1864, when Résal published his energy equation.
‘This equation, together with the somewhat later work of Berthelot on heats of formation and
reaction placed the subject on a sound thermodynamic basis.

1.02. Later developments

Modern propellants may be considered to date from the attempts of Schonbein from 1845
onwards to use nitrocellulose to replace gunpowder. He obtained the nitrocellulose by the
action of a mixture of nitric acid and sulphuric acid on cotton. In these attempts he was
unsuccessful, as was von Lenk in Austria, mainly because the extremely rapid burning of the
nitrocellulose produced greater pressures than could be withstood by the guns of those days.

None the less it was obvious that nitrocellulose, if it could be *‘ tamed,” possessed great
potentialities, especially as it burnt leaving no residue, whereas gunpowder produced over
half its weight of solid residue. Work therefore continued in several countries and in 1865
Schultze in Germany produced a slower burning material by nitrating wood, the product,
after purification, being impregnated with potassium nitrate alone, or mixed with barium
nitrate. The wood was certainly incompletely nitrated, and this, coupled with the yery
different physical properties of the wood in comparison with those of cotton, caused the material
to burn much more slowly and gave a product suitable for use in shot-guns, though notin rifled
weapons.

In 1882, the Explosives Company at Stowmarket in England commenced manufacture of
E.C. powder, which comprised nitrocellulose mixed with potassium and barium nitrates and
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other substances. It was made into grains and hardened by partial gelatinisation with an
ether-alcohol mixture. Again the product burnt too rapidly for use in rifled guns.

Vieille in France in 1884 was the first to produce a really satisfactory propellant from
nitrocellulose. He realised that this could only be achieved by destroying the fine, fibrous
structure of nitrocellulose and he found that this could be done by treatment with a mixture
of ether and alcohol. It is customary to speak of this process as gelatinisation. Vieille worked
the nitrocellulose with an ether-alcohol mixture until a pasty mass was obtained which was
rolled into sheets, cut into squares, and freed from residual solvent by drying. The product
was adopted by the French Army and named Poudre B, after General Boulanger.

In 1888 Nobel produced a similar result by effecting gelatinisation by means of nitroglycerine.
He mixed nitrocellulose with nitroglycerine under water and, by hot-rolling the product,
brought about gelatinisation. Like Vieille, he cut the final sheet into squares, and named the
product ballistite. '

Abel in this country at about the same time used a mixture of nitrocellulose, nitroglycerine
and vaseline (mineral jelly), bringing about gelatinisation by means of acetone. Unlike Vieille
and Nobel, he did not roll the product, but pressed it out into cords before finally drying off the
residual acetone. Owing to its ultimate shape, it became known as cordite, and was adopted
by the Services in place of gunpowder in about 1891.

The introduction of these new propellants naturally led to much experimental work to
determine their ballistic properties. An important improvement in experimental technique
was introduced by Vieille in 1885 ; he obtained the relation between pressure and time during
the burning of the propellant in a closed vessel, by registering the crushing of a copper crusher
on a rotating drum. From this relation he deduced the rate of burning at pressures comparable
to those in guns and enunciated his law of burning, namely, that the rate of burning down the
normal to the surface of the grain is proportional to some power of the gaseous pressure. This
law and the principle underlying the method of determining it are still used, although the
technique has greatly improved.

Another important development during this period was the invention of the chronograph
by Boulengé, a Belgian. By means of this instrument, which measured the velocity of the
shot a short distance from the muzzle, the muzzle velocity could be deduced with great accuracy.
In an improved form it is still in use for routine measurements.

Much theoretical work was published at this time, the chief object of which was the solution
of the ballistic equations to determine the motion of the shot in the gun. The solutions varied
according to the pressure index in the rate of burning law deduced from closed vessel experiments.
Among the earlier solutions may be instanced Sarrau (1876), Moisson (1887), Gossot and
Liouville (1905), Ingalls (1903) and Charbonnier (1908). In all these solutions simplifying
approximations were made, the commonest being the assumption of zero shot-start pressure
and that the co-volume of the gases was equal to the specific volume of the solid propellant.

Charbonnier also introduced a modified form of the rate of burning law which avoided
the assumption of burning in parallel layers and in 1913 Sugot published a solution based on
this J]aw which was reasonably free from simplifying approximations.

Subsequent work is dealt with in detail in succeeding chapters in this book and this
historical sketch is given to indicate briefly the work of the pioneers in internal ballistics. We
now consider modern propellants in further detail.

1.03. Requirements of modern propellants

Propellants used in guns are generally in the solid state and function by rapid transformation
into gaseous products with the simultaneous evolution of heat, this change of state developing
the necessary pressure to produce movement of the projectile. The first requirement of such
propellants is, therefore, rapid conversion into gas. Other requirements are :—
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(a) The rate of burning must be regular to ensure ballistic regularity and a steady
development of pressure. Burning must therefore be from the surface only and
must proceed at a regular rate from layer to layer.

(b) Smoke and flash must not be produced.

(c) Erosion of the gun must be as little as possible ; this means that the temperature
of combustion must be as low as possible.

(d) Ignition must be easy.

(e) Wide variations in temperature of storage should have little effect on the rate of
burning and therefore on the ballistics.

(f) Stability in storage and transport is essential.

The propellants so far considered do not meet all these requirements and we shall see that
the most modern types also fail to conform completely with them.

1.04. Modern developments of propellants

We have indicated that whereas Vieille used only nitrocellulose, Nobel and Abel used
nitroglycerine in addition. It has since become customary to classify propellants in two
groups :—

(i) Those based essentially on nitrocellulose only, known as single base propellants.

(1) Those based on nitrocellulose plus nitroglycerine or other similar substances,
known as double base propellants.

Modern propellants always contain a further ingredient known as a stabiliser, the primary
function of which is to absorb the decomposition products of nitrocellulose and nitroglycerine
formed during prolonged storage and so to prevent their catalysing the decomposition. In
addition they may act as cooling agents and gelatinisers. Stabilisers in common use are
diphenylamine, mineral jelly and carbamite. Picrite to which we will refer later is also a good
stabiliser.

Double base propellants have always been preferred in this country and following the
1914-18 war, research has been concentrated on two main problems :—

(a) That of producing a propellant which did not use a volatile solvent like acetone
in its manufacture. The use of such a volatile solvent is expensive and causes
delay in production owing to the time involved in its final removal. Moreover
there is always some residual volatile matter which is slowly lost in storage, and
this may cause ballistic changes.

(b) That of producing a cool propellant which would not give flash.

The first problem was solved comparatively quickly by the introduction in 1926 of Cordite
SC (* solventless, carbamite ") as the standard propellant for the Royal Navy. This propellant
was not adopted by the Land Service mainly on grounds of economy, as its manufacture
required an entirely different plant ; Cordite MD continued to be used in this Service until
1934 when it was replaced by the ballistically similar, but more stable, Cordite W which was
modified in 1939, owing to shortage of carbamite, to Cordite WM.

The second problem of producing a universally flashless propellant has not yet been
completely solved. The flash from a gun can be resolved into two (or possibly more) major
portions ; the first occurs at the muzzle immediately following the emergence of the projectile ;
the second occurs a fraction of a second later, some distance in front of the muzzle and has
a far greater intensity of illumination than the first. This latter flash is due to the combustion
of hydrogen and carbon monoxide in the propellant gases after admixture with oxygen from the
air.

In the 1914-18 war, attempts were made to reduce this major flash by the addition of
metallic salts such as sodium oxalate to the propellant. Later work has shown that the salts of
potassium, in particular, potassium aluminium fluoride and potassium sulphate are the most
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effective. They appear to act by the prevention of one or more of the chain reactions which
occur in the oxidation of hydrogen to water. Unfortunately, as they produce in the emergent
gases very finely divided particles on which the water-vapour produced in the explosion tends
to condense, their use accentuates the production of smoke. An example of this method of
reducing flash is found in the addition of potassium cryolite to Cordite HSC.

An alternative method of reducing flash is to incorporate into the propellant a substance
which in its decomposition liberates a large amount of nitrogen, so reducing the proportion of
the inflammable CO 4 H, mixture in the muzzle gases. A suitable substance for this purpose
is nitroguanidine (‘‘ picrite ), though other substances are being tried. In addition, such
propellants are much cooler than the older types and thus reduce the tendency to erosion.
Examples of these types are Cordites N, NQ and NFQ. It cannot, however, be stated that
the problem is completely solved by this method and frequently metallic salts have also to be
included with a resulting increase in smoke. This method of reducing flash also involves the
use of larger charges, with possible loading troubles ; in fact the subject is a complicated one
and flashlessness cannot properly be discussed except in relation to a particular weapon.

1.05. Types of propellants now in use
SINGLE BASE TYPES

Single base propellants are standard for American guns and large quantities were imported
from that country during the war of 1939-45 for use in the British Service. This type of
propellant is exemplified by two main compositions known as NH (*‘ non-hygroscopic ”’) and
FNH (“ flashless, non-hygroscopic ’’), both of which contain nitrocellulose and dinitrotoluene,
with, in some makes, dibutylphthalate. The stabiliser is diphenylamine. They are supplied
in tubular grain form, the small sizes being single tube, the larger sizes multi-tube (seven
perforations).

The American Services are showing a tendency to change to the double-base type of
propellants, the disadvantages of the single-base type being :—

(a) They are generally more hygroscopic than the double-base types and are therefore
more subject to ballistic change from differences in atmospheric conditions.
The use of water-repellent ingredients (dinitrotoluene and dibutylphthalate)
gave a considerable improvement in this respect.

(b) They contain a certain amount of residual solvent which, except in hermetically
sealed packages, is slowly lost in storage with a consequent change in ballistics.

(c) As they are too brittle to use in cord form, B.L. cartridges are objectionably non-
rigid. Stiffening of the cartridge bags has been used to meet this difficulty.

It is considered that these disadvantages outweigh their advantages, the chief of which are :—

(a) They are cooler burning and give less flash than the older double-base type.

(b) Their granular shape facilitates the filling of Q.F. cartridges.

For small-arms ammunition, Messrs. I.C.I. Ltd. have produced a very satisfactory form
of single-base propellant known as Neonite. The required ballistics for different types of
ammunition are obtained by surface-treating the propellant grains with methyl centralite and,
in some cases, dibutylphthalate. The coating penetrates into the base grain to some extent,
so giving in effect a progressively increasing rate of burning as the grain burns away. This
coating process is known as ‘‘ moderation.” Similar, but untreated, powders are used as
secondary charges for mortars.

DOUBLE BASE TYPES

As has previously been stated, these constitute the standard British propellants. Details
of the various types are set out in Table 1.01.
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The nomenclature of these propellants is somewhat confused and is at present under
review. The initial letters of the name frequently refer to the name of the factory first producing
this type, e.g., W for Waltham Abbey, A for Ardeer, but may also refer to specific properties
as SC for solventless, carbamite, N for ““ No flash.” The use of the prefix H indicates a hotter
variety of the parent propellant as in HSC and HN, whilst M is added to indicate a modified
type, as in WM. Code letters are also added to indicate the addition of mineral salts, P being
used for potassium sulphate as in N/P. For all propellant shapes except cord, further letters
are also added to indicate the shape, these being :—

/T to indicate single tubular,

M, ,,  multi tubular,
/S ,,  slotted tubular,
/R, ’ ribbon,

JE " flake.

It is convenient to divide these cordites into two main types :—

(1) Those which normally produce flash and which are made either by the solvent
or solventless process.
(i1) Those which are relatively flashless.

The flashing types of cordite are exemplified by Cordites W, WM and SC, the older
types like MD being practically obsolete. Cordite W and WM are produced by the solvent
process, in which essentially a dry mixture of nitrocellulose and nitroglycerine is gelatinised
by stirring with acetone, the necessary stabiliser being simultaneously added. The product
is pressed into the desired shape, and the residual acetone removed by warm air. ~ As has already
been noted, the use of a volatile solvent is accompanied by certain drawbacks in the finished
cordite.

Cordites SC, HSC and SU are produced without the use of a volatile solvent. Briefly
the process consists of mixing the nitrocellulose, nitroglycerine and carbamite under water,
removing the water by use of a papering table followed by drying in warm air, and gelatinising
by hot rolling.  The gelatinised sheets are cut to a suitable size and pressed hot into the desired
shape. 'This process is quick in production and gives a cordite which is extremely uniform
in dimensions ; it is also eminently suitable for the production of very large sizes, and also
of intricate shapes, e.g., cruciform for rocket charges, which could not be made by the solvent
process. Nitrocellulose of high nitrogen content is not so well gelatinised by this process
so that low nitrogen content nitrocellulose has to be used, which involves 2 corresponding
adjustment in the composition of the propellant.

Flashless cordites (exemplified by Cordite N) contain a high proportion of nitroguanidine
in addition to the usual nitrocellulose, nitroglycerine and carbamite. They appear to require
a solvent process for their manufacture though the amount of acetone required is much less
than is necessary for making Cordite W the solvent is removed from such propellants more
easily, so that the final drying time 1s rnuch shorter. These cordites are brittle in comparison
with the flashing types. On the other hand, before the solvent has been dried out they are very
soft and great care has to be taken not to deform the sticks during drying. They are also
rather more difficult to ignite than the older types. In one respect this is an advantage since
if cartridges containing them are struck and pierced by flying fragments of hot metal, the cordite
instead of inflaming, tends only to smoulder and the burning may die out.

1.06. German propellants

The Germans used both single and double-base propellants although in the latter there
was an increasing tendency to use diethylene glycol dinitrate (DEGN) in place of nitroglycerine.
This was probably due mainly to economic reasons, as the supply of glycerine (normally made
by hydrolysis of fats and vegetable oils) was limited, whereas glycol could be made synthetically
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from acetylene in unlimited quantity. The main objection to DEGN is its relatively high
vapour pressure which might be serious in tropical climates. It is a better gelatinising agent
than nitroglycerine, so that successful propellants could be produced using a smaller proportion
than would be possible with nitroglycerine, with the added advantage of reducing the calorific
value.* To render the propellants less liable to flash, nitroguanidine was also mcluded in the
Gu types (flashless types), a common composition being :—

Nitrocellulose =~ 43 per cent.,

DEGN 20 per cent.,

Nitroguanidine 30 per cent.,
the balance being made up of stabilisers and plasticisers. Compositions without such additions
were sometimes used.

The Germans made considerable use of potassium sulphate or potassium chloride as a

means of reducing flash. This material was frequently supplied in bags for use in night firing
only, so avoiding the production of smoke by day.

1.07. Composition and physical properties of propellants

"The composition and physical properties of some typical propellants are given in Table 1.01.
All these propellants are in use in the British Services except MD, which is included for
comparison,

The gas volume is determined by burning a small quantity of the propellant in a closed
vessel (see Chapter V). The gases are collected and their volume at normal temperature and
pressure is measured. The water vapour in the gases condenses under these conditions, so a
correction is added to the observed volume to allow for the vapour equivalent of the water
thus condensed.

The calorific value is determined by burning a small quantity of the propellant in a bomb
calorimeter. Thisis surrounded by water in a heat-insulated container and the rise in temperature
of the water to thermal equilibrium is recorded. From this the heat evolved by combustion 1s
calculated. Since the water vapour in the products of combustion will have condensed at the
final temperature, the calorific value so obtained is referred to as water-liquid.

* An explanation of the term ** calorific value ™ is given in Section 1.07.



CHAPTER 11
THE THERMOCHEMISTRY OF PROPELLANT EXPLOSIONS

2.01. Introduction

In Chapter I a general account of the composition and properties of propellants was given ;
in the present chapter we shall consider some properties which are of special importance in
the development of ballistic theory. From a knowledge of the composition of propellants
and the thermochemical properties of their constituents and of the products of explosion,
it is possible to calculate the temperature at which the gases are evolved and to obtain numerical
values of other important quantities.

The first part of this chapter is devoted to the calculation of the first of these quantities,
namely, the temperature of explosion, which is sometimes called the adiabatic flame
temperature. Departure from the ideal gas laws and the fact that dissociation is not entirely
negligible at the high temperatures obtaining complicate the calculation but the essentials
of the method are as follows :—

(i) For a given propellant composition we can compute the number of gram atoms
of carbon, hydrogen, nitrogen and oxygen present in one gram of solid propellant.

(i) From available thermochemical data, the heat of formation of the solid propellant
can be found.

(ii1) The number of gram atoms of C, H, N and O must be the same in the solid
propellant as in the gas complex. The major gaseous products are CO,, CO,
H,, N, and H,0 ; four of these interact according to the water-gas reaction.
At a selected temperature the proportions of the major gases can be computed
from the above facts.

(iv) The internal energy of the gases can now be found, and, if the temperature has
been correctly chosen, this energy will equal the heat of reaction, i.e., the difference
between the heats of formation of gaseous products and solid propellant.

(v) The calculation is repeated at different temperatures until the heat balance is
obtained.

The method is given in some detail in the following sections.

The other quantities, important in internal ballistics, are deduced in Sections 2.10—2.12
and the later part of the chapter is devoted to a quick approximate method sufficiently accurate
for practical purposes.

2.02. The atomic composition of propellant constituents

We shall eventually require the atomic composition of the propellant and it is useful to
tabulate once and for all the composition in gm.atoms/gm. of the various chemical substances
of which propellants are normally composed. The results are given in Table 2.01, the following
atomic weights being used :—

C =12-010, H = 1-0080, N = 14-008, O = 16-000.

As an example, take acetone, of which the chemical formula is C;H,O and the molecular
weight is 58-078. The atomic composition is therefore given by :—

58078 {C} =3, 58078 {H} =6, 58:078 {0} =1, or,

{C}=15165, {H} =10331, {O} = 1722 x 10-5 gm.atoms/gm.
' 8
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The nitrocellulose in propellant compositions varies in its nitrogen content and the atomic
composition can be obtained as follows. The cellulose molecule is a large one but, for present
purposes, it can be written C;H,0, (OH);. On nitration, x (OH) groups are replaced by
(ONO,) groups, the value of x depending on the nitrogen content. The resulting compound
is C4H,0, (OH),_, (ONO,),. The molecular weight is easily found to be (162-14 4 45x)
and if y is the percentage nitrogen content,

14008«
Y= 16214 + 45x

giving,
1400-8 — 45y

For a given nitrogen content y, x can be calculated from 2,01 and the atomic composition
found from

6 10 — x y 54+ 2x

Cl=wurs: M-wmursm: NM-uws (O - wmurs
Table 2.01 shows the atomic composition of all the nitrocelluloses likely to be required.

2.03. Heats of formation of propellant constituents

The heats of formation of the propellant constituents, which are required in the computation
of the heat of formation of the solid propellant, can be found by subtracting the heat of combustion
of the constituent from the heat of formation of the products of complete combustion, both the
latter quantities being known. The heats of combustion have been taken from recent literature by
Pike* ; the pressure at which they were determined is not always given and no correction has
been made to bring the results to conditions of constant volume. Such a correction would
reduce the heat of combustion, but in general, its magnitude would be within the limits of
experimental error. The data used in compiling the heats of formation of the major products of
explosion (Table 2.02) were more accurate and corrections for pressure and temperature have
been made. Corrections have also been made to allow for deviations from Boyle’s law in
going from one atmosphere to conditions of constant volume.

The basic form of carbon has been taken as graphite throughout, since this is the form
used for most of the published results. The basic form taken is of no importance since ¢arbon
does not appear in the free state in the reactions considered. The heats of formation are all
given for a temperature of 300°K. (80-4°F.), this being the standard charge temperature used
in internal ballistic work in this country.

Values for the heats of formation of the various propellant ingredients are tabulated in
Table 2.01 and, for the purpose of illustration, the value for acetone is worked out below.

From ‘Table 2.02, the heats of formation of CO, and H,0O are 94020 and 67400 calories
per gram molecule respectively, while Table 2.01 gives for acetone, 5165 and 10331 x 10—5 gm.
atoms of carbon and hydrogen. The heat of formation of the products of complete combustion is
therefore

(94020 x 0-05165) + } (67400 x 0-10331) = 8338 cals./gm.

* Pike, A.C.1862. 1B/FP20, 1B.78, 1942. Many of the other tables relating to this chapter are from the same
report. The sources of the data are given in the original paper. Such data are always subject to revision.
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The experimental value for the heat of combustion is (Table 2.01), 7346 cals./gm. and so
the heat of formation of acetone is

8338 — 7346 == 992 cals./gm.

2.04. The atomic composition of the propellant

The atomic composition of the propellant can be found immediately when we know its
composition. Propellant compositions vary from sample to sample and these variations will
be a major source of inaccuracy in the values of the constants deduced. In the absence of
more precise data we take nominal compositions as set out in Table 1.01.  An example, for Cordite
SC, is given below.

Multiplying the amounts of C, H, N and O, extracted from Table 2.01 by the respective
amounts of nitroglycerine, nitrocellulose and carbamite in 1 gm. of Cordite SC (Table 1.01)
and adding, we have :—

C H N O

0-415 gm. N.G. .. . 548 914 548 1645
0-495 gm. N.C. (12-2%N) 1114 1425 431 1790
0-090 gm. Carbamite .. 570 671 67 34

1-0 gm. Cordite SC .. 2232 3010 1046 3469 x 10— gm. atoms.

The atomic compositions of the various propellants listed in Table 1.01 are given in
Table 2.03.

2.05. The heat of formation of the solid propellant

Tables 1.01 and 2.01 also permit the calculation of the heat of formation of the solid
propellant. 'The results are given in Table 2.03 and Cordite SC is again taken as an example;
the heat of formation being

0-415 x 349 4- 0-495 x 641 + 0-090 X 50 = 4666 cals./gm.

There is probably a slight error of some two or three calories per gram due to change of
the heat of formation of the propellant in going from a mechanical mixture to a colloid, but this
quantity 18 too small to be determined with any certainty.

2.06. The products of explosion

Although propellants contain but four kinds of atoms, namely C, H, N and O, these
atoms can combine in different ways to form a very large number of compounds, all of which
will be present in greater or lesser amounts in the products of explosion. It is usual to assume
that gas reactions take place so rapidly at the high temperatures of propellant explosions that
thermodynamic equilibrium is always maintained. This assumption is sufficiently near the
truth even for the relatively cool gases resulting from flashless propellants and is, of course,
still more exact for the hotter gases of other propellants.

The proportions of the various gases must satisfy the following conditions :—

(1) the number of gram atoms per gram of C, H, N and O must be the same in the
gas complex as in the solid propellant, and
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(ii) the ratios of the partial pressures of the various gases are determined by
equilibrium constants which vary with temperature and pressure.
If the gases are perfect, the formal relationship for thermodynamic equilibrium between
one group and a second into which the first can transform is

Product of partial pressures of second group
Product of partial pressures of first group

K(T) = e—AF/RT

where AF is the sum of the free energies of the second group minus the sum of the free energies
of the first group, T is the temperature and R the usual gas constant. The decrease in free
energy of any gas when the temperature rises from absolute zero can be computed from spectro-
scopic data and hence the change in AF for the complete reaction; —AF at absolute zero is
the heat of reaction —AE at that temperature. The heat of reaction at absolute zero is corrected
from that at room temperature from a knowledge of the specific heats of the gases over that
temperature range. Values of K(T) are given in Table 2.04.
A correction for gas imperfection has been given by Corner.*
The equation of state of the gases is taken as

nRT | B nC
= l1 +5+ vz 2,02
where p is the gas pressure, V the volume per unit mass of gas, » the number of gram
molecules in unit mass of gas, R the usual gas constant, T the absolute temperature and B, C
are functions of temperature and gas composition. Only the major products CO,, CO, H,,
H,O and N, are used here and B and C are found from the linear sums

B = (CO,)Bco, +(CO)Bco+ ........ + (N,) By, 2,03(a)
C =(CO,)Cco; +(CO)Cco +-........ + (N,) Cx;, 2,03(b)
where (CO,), (CO), . . . . denote the number of gram molecules of CO,, CO, .. .. per
gram of the gas complex and Bco,, Cco, . . . . are the values of B and C for the pure gases.

Numerical values of B, C for the pure gases have been computed by Corner{ from the
intermolecular forces. The results are shown in Table 2.06.
It can be shown that the equilibrium constant for the water-gas reaction

(CO)(H0)
A 227 K 2,04
(CO,)(H,) ’
is given by
nAB n?AC
KU == KO(T) €Xp {—— '—""-‘\., -—"’2\"_-2'} 2:05
where

AB = Bco 4 Bu,0 — Bco, — Bh,

* Corner. A.C.5646/Bal. 147, 1943.
1 Corner. A.C.5807/Bal. 158. 1943.



12 INTERNAL BALLISTICS

and
AC = Cco + Cu,0 — Cco, — Cn,

Ky(T) is given in Table 2.04 and AB, % AC, obtained from Table 2.06, are given in
Table 2.07. The equilibrium constant is increased by the exponential factor by as much as
50 per cent. at pressures of about 30 tons/sq. in.

The products of explosion at a given temperature and density (1/V) can be found by a
method of successive approximation. The first stage is to compute the major products CO,
CO, H, and H,0, assuming no dissociation. We have then

(N2) = #{N} 2,06(a)

(CO) + (CO,) = {C} 2,06(b)

(H,) + (H,0) = }{H} 2,06(c)

(CO) +2(CO,) + (H,0) = {O} 2,06(d)

the quantities in ( ) denoting gram molecules per gram of the various gases while those in
{ } on the right are gram atoms per gram of propellant and are obtained from Table 2.03.
The total number of gram molecules per gram of the gas complex is, from the first three of
equations 2,06, {C} + % {H} + % {N}. Four of these products interact according to the
water-gas reaction 2,04. If we express (CO), (H;) and (H,O) in terms of (CO,) and the given
quantities {C}, {H} and {O} by equations 2,06 and substitute in 2,04 we obtain a quadratic
equation for (CO,) of which only one root will give positive quantities for all the gases.

The dissociation products are given by similar equilibrium constants. Great accuracy
is not essential in view of the small amounts of these products and the following equations
are given by Corner,

(HO) / V! 20 n ‘

(OH) =~y ( R—T) K, (T) exp( -5 ) 2,07(a)
T \4

(H) = +/(H) (;—T) K, (T) 2,07(b)

o HO) VNV 20
(NO) = iy (ﬁ) K, (T) exp ( — T) 2,07(c)

_ [H0) 2V
V!

© = v0)(gr) KM 2,07
™ = v (gr) Ko (D 2,07(1)

where R = 82:06, the appropriate value when p is in atmospheres.
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The functions K, K,, ... K, are given in Table 2.04. The minor products are listed
in their usual order of importance ; only for the hottest propellants is it necessary to include
O,, O and N. Corresponding reductions are made in the quantities of {C}, {H}, {N} and
{ O } available for the major gases. The calculation is then repeated until the computed quantities
of the dissociation products agree with the values used at the beginning of the calculation.

The method 1s illustrated in Section 2.08 where the products for Cordite SC at a given
temperature and density are calculated. Calculation shows that at pressures of the order of
25 tons/sq.in., dissociation is negligible for flashless propellants but it may be considerable
for hotter propellants. For Cordite SC, it is sufficient to reduce the temperature of the products
of explosion by nearly 1 per cent. and, very roughly, the percentage dissociation is inversely

proportional to the square root of the pressure and increases by about 50 per cent. for every
100°C. rise in temperature.

2.07. The internal energy of the gases

The internal energies of many gases at low pressures have been computed for temperatures
up to S000°K. from spectroscopic data. The accuracy is to within 1 per cent. up to 3000°K.
and within 3 per cent. at 4000°K. for the triatomic gases with at least ten times this accuracy
for the diatomic gases. The value for a monatomic gas is, of course, 3 RT at constant volume.
The data are shown in Table 2.05 for temperatures up to 4000°K. in the form of mean
molecular heats between 300°K. and T°K.

Corner (loc. cit.) has shown that the internal energy (E) of a gas, which is a function of
pressure as well as temperature, can be written

E =E, + (n/V) E, + (n/V)*E, 2,08

where E, is the internal energy at constant volume computed in the usual way from the mean
molecular heat of Table 2.05, and E,, E, are correcting terms which can be calculated from
B and C. Values of E, as a function of temperature and mean values of E,, which varies very
little over our range of temperatures, are given for the various gases in Table 2.08. E,, E,
are only included for the major products.

2.08. Calculation of the explosion temperature

A given density is selected, here we have taken 1/V = 0-2 gm/c.c., and the constitution
of the gas complex computed at a given temperature T°K. by the method outlined in Section 2.06.
Next, the internal energy is found by multiplying the internal energy of the various gases by
their proportions in gram molecules and summing. If the temperature has been correctly
chosen, this energy will equal the heat of reaction, 1.e., the difference between the heat of
formation of the gaseous products (found by multiplying the heats of formation of the various
products, Table 2.02, by the proportions present) and the heat of formation of the solid
propellant, Table 2.03. If the heat of reaction is greater than the internal energy the selected
temperature is too low, a second temperature must be taken and the calculation repeated.
Interpolation will then lead to the required temperature which assumes, of course, that there
has been no heat loss during the explosion which is taken to occur under conditions of constant
volume.

As an example we take the case of Cordite SC at a density of 0-2 gm/c.c. Table 2.03
gives for the atomic composition in 10—5 gm.atoms/gm.

{C} =2232, {H} = 3010, {N} = 1046, {O} = 3469

which, when substituted in equations 2,06 and expressed in terms of (CO,), give
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(CO) = 02232 — (CO,) 2,09(a)
(H,0) = 01237 — (CO,) 2,09(b)
(Hy) =-00268 + (CO,) 2,09(c)

and n = {C} + } {H} + # {N} = 04260

These equations are derived on the assumption of no dissociation and are subsequently slightly
altered : they serve as a means of obtaining a first estimate of the dissociation products.

Taking a tentative temperature of 3100°K, Table 2.04 gives K (T) = 7-281, while from
Table 2.07 we have — AB = 316, — 3} AC = 255. Hence, since 1/V = 0-2,

— (n AB)/V — (n? AC)/(2 V?) = 2877
so that equation 2,05 gives

K, = 7-281 exp (-2877) = 9-706
Equations 2,09 and the water-gas reaction 2,04 yield

[-02232 — (CO,)] [-01237 — (CO,)]

(CO,) [00268 + (COp] > /%

or, 8-706(CO,)? + -0607(CO,) — -0002761 = 0

The positive root of this quadratic is (COZ) = -00314 and, assuming no dissociation, the gaseous
products at 3100°K. resulting from the combustion of 1 gram of Cordite SC are, from
equations 2,09 :—

(CO,) =314, (CO) = 1918, (H,0) =923, (H, =582, (N, = 523
all in 10— gm. mol.

A first estimate of the dissociation products can be made from these values for the major
products and equations 2,07. Thus, since (H,0) = -00923, (H,) = -00582, 1/V =0-2,
n = ‘04260, T = 3100 and, (Table 2.04), K,(T) = -1419, the first of equations 2,07 gives
(OH) = -00006. Similarly the second of 2,07 gives (H) = -00007 and the remaining
equations lead to negligible amounts for the other dissociation products.

These small quantities of (OH) and (H) are formed by robbing the major products. We
now recalculate these major products by reducing {H} and {O} respectively by -00013 and
00006 gm.atoms. We thus have available for the major products in 10—5 gm.atoms,

{C}=2232, {H}=2997, {N}=1046, {O} = 3463
and equations 2,09 are replaced by
(CO) = -02232 — (CO,) 2,10(a)
(H,0) = -01231 — (CO,) 2,10(b)
(H,) = -00267 + (CO,) 2,10(c)
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n is now equal to {C} + 3 {H} + } {IN} 4+ the dissociation products, i.e.,

Working as before we find (CO,) = ‘00313 and the other major products are derived
immediately from equations 2,10 and N, = 4{N}. Reworking the dissociation products
from the new values of the major products we find them unaltered from the values
(OH) = -00006, (H) == -00007.

The next step is to calculate the internal energies of the various gases at the selected
temperature 3100°K. For example, for CO,, Table 2.05 gives as the mean molecular heat
between 300°K. and 3100°K., 11-664 cals./(gm.mol. °C.), so that

E, = 11-664 (3100 — 300) = 32659 cals./gm.mol.

Table 2.08 gives E, =--46500 cals. (c.c./gm.mol.)/gm.mol., E, = 220 x 10* cals.
(c.c./gm.mol.)?/gm.mol. and since 7 = -04266 gm.mol./gm., 1/V =0-2 gm./c.c., equation
2,08 gives the internal energy of CO, as '

32659 — (-04266 X -2) 46500 -+ (-04266 X -2)? 220 x 104

or 32422 cals./gm.mol. Multiplication of these internal energies by the proportions of gases
present and summing leads to the internal energy of the gas complex. The work is set out in
the second and third columns of the table below.

The fourth column gives the heats of formation of the gaseous products extracted from
Table 2.02 and the fifth column is obtained by multiplication by the proportions of the gases.
The sum of this column gives the total heat of formation of the products.

(1) @ @) @ )
Constituents Internal Internal Heat of Heat of
10—5 energy energy formation formation
gm. mol./gm. | cals./gm. mol. cals./gm. cals./gm. mol. cals./gm.
(CO,) 313 32422 101-5 94020 : 294.3
(CO) 1919 17788 341-4 26700 512.4
(H,0) 918 25209 231-4 57510 527.9
(H,) 580 16587 96-2 - —_—
(N,) 523 17600 92-0 — - -
(OH) 6 16780 1-0 —5950 —4
(H) 7 8344 -6 —51530 —3-6
n="-04266 Sum=—=864-1 Sum=1330.6
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The heat of formation of the products is therefore 1330-6 cals./gm., while, from Table 2.03,
the heat of formation of the solid cordite is 466-6 cals./gm. The heat of reaction is the difference,
viz., 864-1 cals./gm. By a fortunate choice of temperature, this equals the internal energy and
so 3100°K. is the temperature of explosion T.,.
above calculation for two temperatures differing by 100° and then find the temperature which
provides the heat balance by interpolation.

INTERNAL BALLISTICS

2.09. The change of gas composition with temperature

As the temperature of the gas complex decreases from the value giving the heat balance,
the composition of the gases changes considerably. Calculations on the lines of Section 2.06

give the following results :—

It will usually be necessary to carry out the

Temperature (°K.) 3100 2800 2400 2000 1600

Gas composition

(10—5 gm. mol.,gm.)
(CO,) 313 324 348 386 455
(CO) 1919 1908 1884 1846 1777
(H,0) 918 911 889 851 782
(H,) 580 592 616 654 723
(Ny) 523 . 523 523 523 523
(OH) 6 2 — — —
(H) 7 3 1 — —_
105 n 4266 4263 4261 4260 4260

The gas composition at 1600°K. is quite near that obtained from experiments in the bomb
calorimeter ; at 1583°K. the calculated composition agrees very closely, as is shown by the

following table :—

Calculated Composition

Gas Experimental

10-5 gm. mols.;gm. gm. gm.
Co, 533 -234 .23
CcO 1699 -476 <47
H,0 724 -130 13
H, 781 -016 -02
N, 523 147 -15
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It appears therefore that changes in gas composition cease when the temperature drops
to 1583°K. and the products are said to ‘ freeze ” at this temperature. N

It is interesting to compare the calorific value of the calculated composition of the gases
at this temperature with that obtained experimentally in the bomb calorimeter.

The heats of formation of the calculated products in cals./gm. are :—

Co, .. 500
CO .. 454
HO .. 417

1371

Subtracting the heat of formation of the solid propellant, 467 cals./gm., we obtain the
theoretical calorific value 904 cals./gm., water gaseous. To adjust this to water-liquid
conditions we add the heat evolved in the condensation of -130 gm., which is 70 cal. The
calculated calorific value, water liquid, is therefore 974 cals./gm. which agrees reasonably
well with the experimental value, 970 cals./gm. in Table 1.01.

2.10. The pressure of explosion

The pressure of (uncooled) explosion for a given gas density can be found from equation
2,02, B and C being calculated from equations 2,03, Table 2.06, and the calculated composition
of the gas complex.

Thus for Cordite SC at a density of 02 gm./c.c. and temperature of 3100°K.,

B = -00313 x 56-5 + ‘01919 x 32-6 + -00918 x 7-5 4+ -00580 x 15-1 + -00523 x 32-6

and similarly, C = 6-054. Hence with 1/V = 0-2, n = -04266, T = 3100, and R = -5384
(for p in tons/sq.in., V in c.c./gm.),* equation 2,02 gives p = 176 tons/sq.in.

2.11. Force constant

The quantity F = #RT, is of fundamental importance in internal ballistics and is termed
the * force constant” of the propellant. Cornert has computed temperatures of explosion
and the composition of the gas complex for Cordite SC for densities ranging from 0-01 to
0-35 gm./c.c. and shows that the product nT, is sensibly constant for quite wide variations in
gas density. It is not very material therefore at what density F is calculated and that for
1/V = 0-2 is usually given.

In practical units we have

F = 14-90 nT, inch-tons/lb. 2,11
for use when pressures are measured in tons/sq.in. and densities in Ibs./cu.in. In closed

vessel work pressures are often measured in tons/sq.in. and densities in gm./c.c., with these
units it is customary to denote the force constant by A, and then

* The value of the gas constant has been taken as 8206 atmos. c.c./mol. deg. C.
1 The results given in Sections 2.08, 2,10 are based on the composition of Cordite SC given in Table 1.01. Corner
uses a slightly different composition and his results for 1/V=0-2 differ slightly from those given here.
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Ao, = 0-5384 T, (tons/sq.in.) (c.c./gm.) 2,12
For Cordite SC, n = 04266, T, = 3100 so that F = 1970 and », = 71-2.

2.12. The co-volume and equation of state

The equation of state generally used in internal ballistics is that of Van der Waals, the
term due to forces of cohesion being neglected at the high pressures encountered.

The equation takes the form

p (V—b) = nRT = TF/T, 2,13

where b is called the co-volume.
Comparing this with 2,02, we see that b is a function of V and T. In fact,

b=V [1 —ny/n (1 + BV + nC/w)] 2,14

where 7, is the value of n at the explosion temperature. But for dissociation, n would be
constant ; actually it changes very little with temperature and its variation may be neglected.

The following table shows the variation of co-volume with temperature. It gives values
of b for Cordite SC at a gas density of 0-2 gm./c.c., the values of B, C and n having been
calculated on the lines indicated in Sections 2.08 and 2.10.

Temperature (°K) 3100 2800 2400 | 2000

Co-volume (c.c./gm.) 0.956 l 0-955 0.953 0.948

Corner gives the following values for the co-volume at various gas densities at the explosion
temperature :—

Density (gm./c.c.) ‘ 0-1 0.2 0.3

Co-volume (c.c./gm.) ‘ | 1-02 0-96 0-88

In gun ballistics the gas density seldom exceeds 0-25 gm./c.c. and only reaches this value
at the higher temperatures ; at lower temperatures the gas density is much lower. The
thermodynamic efficiency of a gun seldom exceeds 0-35, so we need not consider temperatures
below about 2000°K., in the case of Cordite SC. In these circumstances we see that b is
nearly constant and a representative mean value can be chosen. Similar calculations with
other propellants lead to similar results. The mean value usually employed is the value at
a gas density of 0-2 gm./c.c. at the temperature of explosion.

In the case of Cordite SC the mean value is 0-956 c.c./gm. or 26-5 c.in./lb.

We conclude that for the temperatures and pressures encountered in internal ballistics
the equation of state of the gas complex may, with sufficient accuracy, be written,

p(V—b)=TF/T, 2,15
with b constant.
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2.13. The ratio of specific heats

The ratio of the specific heat at constant pressure (o,) to that at constant volume (av) for
the gas complex at the mean conditions obtaining in the gun is required by the internal ballistics
equations.

When the shot emerges from the muzzle, conditions are given approximately by T == 0-6 T,
and 1/V =01 gm./c.c. If E(T, V=) denotes the internal energy of the gas complex at
temperature T and density 1/V the specific heat at constant volume at the mean conditions
in the gun can be taken as

6v = {E(Ts, 0-2) — E(0:6 T, 0-1)} /04 T, 2,16
Then since,

oT oV

o1 (. (), -
we have
vy — 1= nR/o, 2,17

where

Y = 6p/0v

For Cordite SC we have found in Section 2.08 that E (T,, 0-2) = 864-1 cals./gm. A
similar calculation at T = 0-6T, = 1860, 1/V = 0-1 gives E (0-6T,, 0-1) = 441-4 cals./gm.
Equation 2,16 then gives oy = 3409 cals./gm.°C. and, since in heat units, R = 1-987
cals./gm.mol. °C., equation 2,17 gives y = 1-248.

2.14. Quick approximate method

The quantities F ( = nRT,), b and vy are all required in internal ballistic work : all can
be found from the composition of the propellant and the tables relating to this chapter by
the methods indicated in the preceding sections. The numerical work is, however, rather
tedious and a simple semi-empirical method of calculation has been proposed by Hirschfelder
and his co-workers* : an indication of this approximate treatment is set out in the succeeding
sections.

The calculation of n is obtained by neglecting dissociation so that, as stated in Section 2.06,
n = {C} + 3{H} + ${N}. Values of {C} + } {H} + $ { N} are tabulated for propeliant
constituents in Table 2.09 with the notation that #; is the value of this quantity for the st
constituent. If then x; is the weight fraction of the #th constituent

n = X xini 2,18

the summation Z; being over all the constituents of the propellant. The error in using equation
2,18 will be very small for, as we have already seen, dissociation has little effect on the value of n.
The specific heat of the gas complex is fourd from

av = (COy) (Cv)co; + (CO) (Ch)eco + ........ + (N2) (Co)n, 2,19

where (Cy)co,, etc. are the molecular heats at constant volume for the several gases meaned
between 2000°K. and 3000°K. The values used for these mean molecular heats are :(—

(Cv)co, = 12824, (Ci)co =6-813, (Ci)no =10-905, (Cv)u, =6:530 and (Cv)n, = 6-767
cals./gm.mol. °C. Much of the labour of the previous work has b¢en taken by computing

® Hirschfelder and Sherman. N.D.R.C. Report No. A-101, O.5.R.D. Report 935, 1942 and N.D.R.C. Armor
and Ordnance Memos. Nos. A-67M to A-70M, O.S.R.D. Report 1300, 1943,
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(CO,), (CO), etc. from the water-gas reaction. Such a process clearly cannot find a place in a
quick approximate method. Instead o is calculated first on the assumption that there is no
CO, and secondly on the assumption that there is no H,0. The two values are then meaned.
If there is no CO,, equations 2,06 give

(CO)=0, (CO)={C}  (H0)={0}—{C},
(H)=%{H}+{C}—{O0},  (N;)=3}{N}

and if there is no H,O we have
(CO) = {0} —{C},  (CO) =2{C}—{O0},  (H,0) =0,

H, =} {H}, (N;) = 3 {N}
Mean values are therefore

(CO,) =4 {0}—1}{C}, (CO)=3{C}—14{0}, (H,0)=3{0}—}{C;

(H) =${H} + 3 {C} —${0}, (N =4}{N}
Inserting these expressions and the numerical values of (Cv)co,, etc. in equation 2,19 we find
ov = 1620 {C} + 3-265 {H} + 3-384 {N} + 5-193 { O}

Values of this quantity are tabulated for propellant constituents in Table 2.09 with the notation
(C.)i for the ith constituent and oy is then found from

oy = Z; x; (C)i 2,20

Hirschfelder also tabulates the energy released at 2500°K. This is the difference between
the heat of reaction and the internal energy at this temperature. The actual composition of
the gas complex is not calculated but the energy released is found as a weighted mean between
the two extremes of no CO, and no H,0. The weighting is such that there are 77 gram
molecules of H,O in the gas complex for every 23 gram molecules of CO,, these numbers being
obtained from an examination of an experimental propellant used by Crow and Grimshaw.*

The energy released at 2500°K. is denoted by (En..) 2500°K. and is given by
(Erer) 2500°K = Z; x; E; 2,21

the tabulated quantity being E: for the ith constituent of the propellant. Details of the
formula from which E; was computed are given in the original report quoted ; lack of space
forbids a reproduction here.

At any temperature T, the energy released is given by

El. = (Erel.) 2500°K — (T — 25“)) Ov

* Crow and Grimshaw, Phil. Trans. Roy. Soc. A-230, 1931,
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In particular, at the explosion temperature T, E. is zero and we have
T = 2500 + (Era.) 2500°K /oy
which, with equations 2,20, 2,21 gives
o = 2500 + (Zi xi Ei)/(Zi x: (Cv)i) 2,22
and this formula and Table 2.09 permit the explosion temperature to be calculated very quickly.

At temperatures above 3000°K. dissociation becomes important. An examination of one
of Crow and Grimshaw’s hot propellants led Hirschfelder to the formula

y = Erel. — E'rel. = — 01185 (T — 3000) — 8-27 x 10— (T — 3000)? 2,23

where E'r. is the energy released if dissociation did not occur.
Thus we have

Eret. = (Exet) 2500°K — (T — 2500) oy + y 2,24

Putting E;r. =0, T =T, using 2,24 ; 2,23 ; 2,21 ; 2,20 and solving the quadratic in T,,
gives for explosion temperatures above 3000°K.,

T, = 3000 + 6046 { — (% % (C)i + -01185)
+ I:(z,- % (Cv): + -01185)2 + 3:308 x 10—+ T (% E: — 500%, (cv),-)] 3 } 2,25

Once oy has been found from equation 2,20 and 7 from equation 2,18, the value of ¥y is
immediately given by equation 2,17, viz.,

y — 1 =nR/ey
The calculation for Cordite SC is :—
Constituent xi ni xi ng (C)i xi (Cy)i E; x Ei
Table 1.01|| Table 2.09 ' Table 2.09 Table 2.09

Nitrocellulose 495 04127 -02043 -3478 -1722 137-7 68-2

(12-2% N.)
Nitroglycerine 415 -03083 ‘01279 -3439 1427 9519 395-0
Carbamite -090 -10443 -00940 -3909 -0352 — 2765-8 — 2489
Sum = 1-000 Sum = 04262 Sum == -3501 Sum = 214-3

Zi x: (Cv)i 4 0118 = -3619, Z; (x; E; — 500x; (C.):) = 39-3
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Substitution in equation 2,25 gives T, = 3106. Also from equation 2,17
vy — 1 = -04262 x 1-987/-3501 = -242

Hence the approximate method gives, for Cordite SC, n = 04262, T, = 3106, F = 1970,
v = 1-242 while the more laborious methods of Sections 2.08, 2.13 give n = -04266, T, = 3100,
F = 1970, v = 1-248.

For the co-volume, Corner gives the following empirical formula

b (c.c./gm.) = 1-18 + 6:9 {C}—11-5 {O} 2,26

the expressions in { } being the number of gram atoms of C and O in 1 gram of propellant.
These quantities are given in Table 2.03 and equation 2,26 gives a quick means of finding
co-volumes at pressures in the neighbourhood of 20 tons/sq. in. For Cordite SC, {C} = 02232,
{O} = -03469, so that b = 0-94 c.c./gm. The value calculated in Section 2.12 was 0-96.

A comparison of values for the fundamental ballistic quantities calculated by the methods
of this section with those given by the more elaborate methods is given below. The latter
values are, for the most part, taken from Corner’s paper.

n (10—5 gm.atoms/gm.) Ty K. Co-volume at 0-2 gm/ec.c.
Propellant
By By By By By By

Sect. 2.14 Sect. 2.08 Sect. 2.14 Sect. 2.08 Sect. 2.14 Sect. 2.12
NH 4372 4374 2695 2680 0-96 0-99
WM 4170 4188 3214 3223 0-92 0-94
W 4076 4085 3304 3299 0-92 0-93
HSC 3858 3887 3600 3621 0-89 0-91

2.15. Table 2.10 sets out values for adiabatic flame temperature, force constant, covolume and
y for the propellants of Table1.01. These have been calculated by the approximate methods of
the last paragraph and, except for the potassium nitrate of Cordite AN, the small amounts of
inorganic salts in the compositions have been neglected owing to lack of the relevant data.

The moisture and solvent contents have also been omitted. For solventless and picrite
propellants these are quite small. For Cordite WM the acetone content may be nearly one per
cent. for the largest sizes, the moisture content being about one-half of this. For American
propellants, the moisture content may be of the order of 0-5 per cent. but the residual (ether-
alcohol) solvent content increases with the size up to some 3:5 per cent. for the largest size.
A moisture content of one per cent. reduces the force constant by about one per cent. and
solvent content of one per cent. reduces it by nearly 2 per cent., depending on the particular
propellant.



CHAPTER III
THE BURNING OF PROPELLANTS

3.01. Theories of the burning of gun propellants

There are very few such theories, and they can be summarised quickly. Before doing
this, it is worth considering whether there is any need for a theory. One result of a fully
developed theory will be a formula showing how the rate of burning depends on composition,
initial temperature, and pressure. There will be perhaps one or two constants to be determined
by fitting to a few observed rates of burning. The possibility of predicting rates of burning
is not, however, a justification for a theory of burning ; the rate of a propellant can be guessed
from its composition sufficiently closely for the purpose of predicting compositions with
required characteristics.* 'This assumes a knowledge of the rates of a number of propellants
of similar physical nature : colloidal propellants with an emulsion as stabiliser (for example,
mineral jelly) are noticeably faster than colloidal propellants of the same explosion temperature
but with stabiliser distributed homogeneously (for example, carbamite) ; likewise, picrite
propellants contain this substance as crystals enmeshed in the gel, so it is perhaps not surprising
that the rate depends on the size of the crystals. Many data have been accumulated about
all such types of colloidal propellant, so that it is not necessary to appeal to theory for the
dependence of rate on composition. The variations with pressure and initial temperature are
also obtainable from closed-vessel experiments. In short, the rate of burning can serve as a
check on a theory or a way of evaluating its constants, but cannot be a reason for setting up the
theory.

The real value of a theory of burning lies in its physical and chemical picture of the process.
If this picture is reasonably close to the truth it helps us to understand various phenomena
associated with burning, for example, * erosion,” and ignition. A successful theory would
provide a general understanding of these phenomena, and would indicate the possibilities
of control ; it might also extend to quantitative predictions, but that is perhaps too much to
expect. Even a qualitative theory can be a valuable guide in the choice of significant experiments.
Therefore a theory of the burning of a propellant may give small discrepancies from experiment,
showing that it is quantitatively deficient, and yet it may provide an understanding of the
process sufficient for many needs.

All theories put forward up to now can be divided into two types : the first may be called
the ““ surface theories,” in which the burning is controlled by the rate at which energy (in the
right form) is transmitted from the hot products to the surface of the solid propellant; the second
class of theories fix attention on the reactions in the gas phase, which are thought to control
the overall rate. The latter may be called * vapour-phase theories.” These names indicate
the feature which is thought to be the controlling phenomenon.

* One way is to plot the rates of burning (at a given pressure) against uncooled temperatures of explosion
or calorimetric values. The points lie near a smooth curve. These properties can be calculated from the
composition. Hence the rate of burning can be estimated from composition.

Muraour (Comp. Rend. 187 (1928) 289) found that log (rate of burning) was a linear function of the uncooled
explosion temperature for a series of colloidal propellants (NC-NG-carbamite). This form of relation gives quite
a good fit to British data for propellants of this type, though the fit is not so close as Muraour found.

23
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3.02. Surface theories

These have been suggested by Létang, Schweikert, Muraour, Yamaga, and Crow and
Grimshaw ; Muraour’s work has also been reviewed by Schmidt.®

These theories consider the rate at which energy is transferred from the hot gas to the
solid. The molecule of the propellant may be supposed to react if it receives a sufficiently
large amount of energy, by being struck by a fast-moving gas molecule. This is the essential
part of the theories of Muraour, Yamaga, and Létang. An important point is therefore the
energy-distribution of the molecules which strike the surface. What energy-dlstrlbunon
is to be assumed for the molecules (that is, the *“ average temperature of their origin ) is a
point at which the theories differ.

These theories give a rate of burning proportional to the number of sufﬁmently energetic
collisions per unit area per second, and if the energy-distribution of the impinging molecules
does not depend on the pressure, the rate of burning is proportional to pressure. Muraour
has discussed the energy-distribution in a qualitative way, and has arrived at the relation

M=a-+bp

where p is the pressure, M is the rate of burning (mass per unit area per second), and @ and b
are constants.

At high pressures the number of impacts per unit area per unit time is not exactly
proportional to pressure, being altered by the finite size of the molecules.

Muraour has discussed qualitatively the dependence of the rate on the uncooled explosion
temperature. Although his theory has not been given a quantitative development, it has obviously
been of value in guiding experiment. His picture involves a decomposition of the solid
which may be only incomplete and followed by reactions in the gas phase, ending in the usual
equilibrium products. This is much the same as the process assumed by Boys and Corner
(Section 3.03), but the controlling rate is very different in the two theories. For Muraour the
rate of the whole process is fixed by the rate at which decomposition occurs at the surface of
the solid propellant.

Yamaga has produced a more quantitative theory based on less acceptable physical ideas ;
for instance, he identifies the temperature of the impinging molecules with the uncooled
explosion temperature, and he assumes that a surface molecule has to be in an activated state
before it can react. Létang had earlier produced a similar theory without activation of the
surface molecules by the thermal energy of the solid. For a critique of these theories see Corner.t

Crow and Grimshaw assumed that a molecule of the propellant requires extra internal
vibrational energy before it will decompose. This energy was supposed to be supplied by the
internal vibrational energy of the impinging gas molecules coming from the layer outside the
solid. The temperature of the gas molecules was taken to be the uncooled temperature of
explosion. The vibrational energy obtained by the propellant appears as an increase of tem-
perature, and the amount necessary for decomposition is measured by the ignition temperature
or “touch-off” temperature. The rate of transfer of vibrational energy from impinging
molecule to solid is governed by an accommodation coefficient. 'The two arbitrary parameters

* Létang, Mem. Artill. Franc. 1 (1922) 955,
Schweikert, Innere Ballistik, (1923),
Muraour, Bull. Soc. Chim. 41 (1927) 1451 ; 47 (1930) 261 ; Comp. Rend. 192 (1931) 227,
Muraour and Schumacher, Mem. Poudres 27 (1937) 87.
Yamaga, Zeit. ges. Schiess-und-Sprengstoffwesen 25 (1930) 60,
Crow and Grimshaw, Phil. Trans. Roy. Soc. A. 230 (1931) 387.
Schmidt, Zeit. ges. Schiess-und-Sprengstoffwesen 27 (1932) 1, 45, 82.

1+ Corner, A.R.D. Theoretical Research Report 2/43,
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for each propellant were chosen to reproduce the rate of burning and its dependence on the
initial temperature of the propellant. The touch-off temperature varied considerably over
the four types of cordite studied, and its prediction from composition would appear to be
difficult.

Crow and Grimshaw concluded that the rate of burning at high pressures was proportional
to the density of the gas rather than its pressure. This has been challenged from the
experimental side,* and its deduction from the assumptions of their theory might also be
questioned.

All these theories lead to the conclusion that the rate of burning depends on the gas
temperature near the solid. From experimentt it is known that the rate is not affected by
proximity to a different propellant. This shows that the effective gas-layer round any piece
of cordite contains only gas emitted from this propellant ; mixture of the products of the
various propellants takes place further from their surfaces. For the same reason the
temperature of uncooled explosion in these theories should be the temperature at constant
pressure, not that at constant volume, as so often used. The difference between these
temperatures is of order S00°C.

3.03. Vapour-phase theories

A possible criticism of all the previous theories is that they pay insufficient attention to
the reactions in the layer of gas just outside the solid. The bombarding molecules come from
a layer which is at most a few mean paths thick. Their effective temperature is supposed
to be the temperature of explosion, or very near it. 'The reactions of the gas leaving the surface
are therefore assumed to evolve no heat outside this layer. Moreover, no appreciable reaction
can occur in the few collisions suffered in traversing this layer. This means that these theories
assume the surface decomposition of the propellant to give the final products in one stage ;
or if not the final products then gases which transform into the final products without evolution
of heat.

Such a conception is hardly in accord with modern views on chemical reactions. These
lead us to expect a primary decomposition of the solid into gases which probably undergo
many reactions before the final products are reached. Homogeneous gas reactions must be
going on in the gas for a distance of some hundreds of free paths from the solid. Boys and
Corner have therefore proposed a theory which considers the gradual progress of reaction in
this zone. The reactions were idealised to a single reaction leading from the * intermediate
products ”’ of the primary decomposition of the solid, up to the final equilibrium products.
It was assumed that most of the heat of explosion was given out in this gas reaction. This
sweeping idealisation of the actual reactions was made necessary by the difficulty of handling
any more complicated case, and also by the lack of information (at that time) of the probable
intermediate products. A theory of flames in gases was used to find the mass-consumption
of the reaction zone, and so the rate of burning of the solid. The order of the chemical reaction
decides how the rate of burning (M) depends on the pressure p ; for example, a first-order
reaction leads to M varying as 4/p and a second-order reaction to M varying as p.

These results suffice to represent the observed variation of the rate of burning with pressure.
Let it be assumed that there are parallel routes from “‘ intermediate * to final products, whose
overall rates are first and second order ; then at sufficiently low pressures the first-order set of
reactions will predominate and M will vary as 4/p; at high pressures the second-order reaction
will be the more important, and M will vary as p in this pressure region. This does indeed
represent the general behaviour of propellants. At high pressures there enter other effects.

® Hunt and Hinds, Proc. Roy. Soc. A. 138 (1932), 696.
1+ Muraour, Z. phys. Chem. A. 139 (1928), 163.
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It may be mentioned here that calculation has shown that the ratio M/p at 20 tons/sq. in. can
fall to about 80 per cent. of its value at low pressures (say 5 tons/sq. in.). The points to be
noted are : (i) the change being the resultant of several effects of different signs, there is no
reason to expect all propellants to show closely similar high-pressure behaviour ; (ii) the results
can be expressed in terms of either the pressure or density, but not necessarily as a simple form
in either case.

The earliest form of their theory was not entirely satisfactory quantitatively. The steep
concentration-gradient in the reaction-zone causes a significant diffusion of products and
reactants. Not until diffusion had been included in the theory was it possible to get agreement
with experiment with reasonable assumptions about molecular weights, heats of reaction and
collision numbers. The theory of the flame-zone, allowing for diffusion, has been published
by Corner.* In this book we shall present only the simpler theory omitting diffusion, since
the latter effect does not alter the physical picture nor does it affect the form of the dependence
on pressure, while the equations are simpler without diffusion terms.

The theory of Boys and Corner has a close connection with the work of Belajev,} though
it was developed in ignorance of the latter. Belajev’s theory refers to the burning of volatile
explosives, which he sharply distinguishes from propellants. His idea is that the surface
of the explosive is emitting it as vapour, and that its decomposition takes place in the gas phase
just outside the liquid surface. The surface temperature is the boiling-point of the liquid
at the given pressure. This is clearly not applicable to cordites, and is replaced in Boys’ theory
by the assumption that the substances being emitted from the surface into the gas reaction-zone
are products of the low-temperature decomposition of the propellant. Apart from these
differences the theories are much the same. Belajev used the theoretical work of Zeldowitch
and Frank-Kamenetsky on flames in gases, which is in many ways similar to the work of Boys
and Corner.¥

The essential feature of both these *‘ vapour-phase ”’ theories is that the rate of burning is
fixed by the mass-consumption of the flame outside the surface. The consumption of the
flame is decided by its characteristics alone.

We shall now give the simplest form of the theory of a flame zone, then the application
to the “ vapour-phase ”’ theory of the burning of a homogeneous propellant ; finally we shall
mention the effects which enter at very high pressures.

Before passing on to these matters, it must be said that the theory which follows is applicable
only at gun pressures. The phenomena at rocket pressures, of order a few hundred Ib./sq. in.,
are_more complicated. This field has been much studied in America, particularly by
B. L. Crawford and O. K. Rice, and it appears to be necessary to consider several successive
reactions to explain the observations. Reactions inside the solid are important, and it is no
longer possible to speak of a purely ‘‘ vapour-phase ”’ theory. The difference between the two
fields can be illustrated thus : the rate of burning of a rocket propellant has been found to
depend on the mean molecular weight of the nitrocellulose, which is a long-chain polymer
with a wide range of possible chain-lengths ; on the other hand, the mean molecular weight
of the nitrocellulose has never been proved to affect the rate of burning at gun pressures.

3.04. Theory of a flame in a gas

A reaction zone moves through a medium by the transfer of some activating influence
from the portion already reacted to an unreacted part. This in its turn reacts and again
activates more unreacted material. In an exothermic reaction there are several ways in which

® Corner, Proc. Roy. Soc. A. I98 (1949) 388 ; also A.R.D. Theoretical Research Report 1/43.
1 Belajev, Acta Physicochimica 8 (1938) 763 ; 14 (1941) 523. Comp. Rend. U.R.S.S. 24 (1939) 254.

} For the relation between the two theories, and a review of all flame theories up to 1942, cf. Corner, A.R.D.
Theoretical Research Report 1/43.
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the activating influence may be transferred. These are the flow of heat, diffusion of active
particles or catalytic intermediate products, or radiation. In all cases of the burning of cordite
there are products at extremely high temperature, and there is a considerable flow of heat from
these to the unreacted portion. We shall ignore the other possibilities of activation and merely
consider the flow of heat, a picture which can conveniently be described as the simple thermal
model. We shall examine the rate at which the activating heat is transferred, by calculating
the thermal conduction from the distribution of temperature through the zone.

We shall examine the steady propagation of a plane reaction zone through a homogeneous
medium with the following properties :—

(1) the medium is capable of a single exothermic reaction whose rate at any point
in the medium is determined solely by the temperature, pressure, and the stage
to which the reaction has proceeded at the point ;

(i1) the velocity of the reaction zone is so slow that the pressure is effectively constant
through this zone.

Diffusion will be neglected.

The general analysis would apply to a flame in a gas, or to the movement of a reaction
zone in a solid or liquid, provided the above conditions were fulfilled. We shall examine the
general case, and then a special case in which constant specific heats and thermal conductivities,
together with activation energy formulae for the reaction rate, are assumed. The general
case can always be integrated numerically when the necessary data are available, and in the
special case an explicit formula for the rate of burning can be obtained.

We shall examine the structure of a plane reaction zone which is in steady motion. We
wish to predict the speed for which such a steady motion is possible. We shall exclude the
phenomenon of detonation, whose speed is very different from that of any flame. A complete
theory would cover detonation and such non-steady phenomena as ignition and the transition
to detonation. 'Throughout this work we shall consider only the steady motion of flames.

This restriction leaves two points uncertain : in the first place we do not show how such
a steady motion could be generated ; secondly, we do not prove that such a flame is stable.
These are difficult questions which do not appear to have simple general answers. However,
in the application to cordite we can appeal to experiment as a proof that such regimes are both
possible and stable.

3.05. Propagation of plane reaction zone

Take an x-axis of reference perpendicular to the plane, with an origin moving with the
reaction zone, so that relative to our axes of reference the unreacted medium moves from the
direction of negative x and after passing through the reaction zone the products pass towards
infinite x. All properties of the system are functions of x alone. When U is the velocity of
the medium at any point, the rate at which any property y of a small given part of the medium
varies with time 1s given by

Dy _

R R
Dr ot T Uz = U 3,01

dx

U is itself a function of x.

The quantities whose variation through the reaction zone are required are U, the velocity,
V, the volume per unit mass, T, the temperature, and ¢, the fraction the reaction has progressed
towards completion at the plane x, so that of the gases passing this plane a fraction ¢ (by mass)
consists of the products of reaction. We can immediately obtain a relation between U and V.
If we consider the material moving along a cylinder with walls parallel to the x-axis and of unit
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cross-section, it is apparent that the same mass is moving across any cross-section of this per
unit time, and representing this by M, we have

M = U/V 3,02

Since the pressure is constant, V must be a function of T and ¢ only, and is known from
the equation of state for the medium with a given «.
The energy crossing any normal cross-section of the cylinder must be a constant, or energy
would accumulate or disappear between two sections. The energy flow is composed of
(a) the intrinsic energy E per unit mass, transported by the mass flow,
(b) the work done by the material on one side of the section by its pressure on the
material on the other side of the section, and
(c) the flow of heat by thermal conduction, described by a thermal conductivity 2.
The flow by conduction at large distances from the reaction zone will be zero at both sides.
Denote the conditions at a large distance before the reaction zone by T, V,, etc., and at large
distances past as T'm, Vi, etc. Then we have

ME-}—p_U—)«%:MEmﬁ-pUm:MEU-I—pUO 3,03
which gives

A dT |

M EE:E—E,,.-{-;:(V—V,,.):H—HO or H— Han 3,04

where H is the total heat content per unit mass.

We need a further relation, which is supplied by considerations of reaction velocity. The
homogeneous reaction rate, expressed as De/Dt, will be a function of &, V and T by our initial
assumptions.* Hence we have

,de De _
La—;——--]-)—t—:f(s,v,T) 3,05

Equations 3,04 and 3,05 can be written in terms of ¢ and T alone, since H will be a known
function of ¢, T and V, and the last can be eliminated by using the equation of state. In this
way we can obtain two differential equations in ¢, x, and T which can be simplified by dividing
one by the other, giving

de M T)
dT ~— M* (H — H»)

3,06

This is possible only because x does not appear except as dx. In more general cases than
we are considering here, x may appear explicitly ; this happens when the phenomena in the
flame zone depend on the distance from the solid boundary. In such cases there is no point
in forming 3,06. In our case, however, this step is useful because the problem of the flame
speed can be solved from 3,06 alone. If distances in the flame zone are of interest the results
can be substituted in 3,04, giving the relation between x and T or e.

® This implies that the reaction rate at any point is determined by the local temperature, just as if the gas at
that point were 1n a large enclosure at constant temperature. This is true only if the thickness of the reaction
zone is large compared with the mean free path of molecules in it. It can be shown that this condition is satisfied
in the flames outside propellants.
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We require the integral of 3,06 which is such that T = T, when e =0 and T = Tn
when ¢ = 1. T, is the temperature at a large distance inside the unreacted medium, the initial
temperature, which is known in any particular set of experiments. T, follows from this by
the relation

H, = Hn

where H, is the total heat content for ¢ = 0, and H,, refers to ¢ = 1.

Tm is the temperature of burning at constant pressure. In the application to cordite Ty
must be distinguished from the temperature of explosion under constant-volume conditions
(as in closed-vessel work).

Equation 3,06 is a first-order equation, and its solution is determined by the parameters
of the equation, together with one pair of corresponding values of € and T. The solution
determined by the condition at T, will in general not fulfil the condition at the upper limit T..
There will be one value of M for which both conditions hold ; this determines the only velocity
possible for a steadily moving reaction zone in the given medium. This value of M is a function
of the other parameters in the equation.

The form of the equations ensures that € and T remain constant beyond the point where
e =1and T = Ty, This has the result that in finding M we can restrict our attention to the
equation between € and T. No matter whether the point (¢ = 1, T = Ty) is at a finite or
an infinite distance, we can be sure that everywhere beyond this point the outgoing gases will
be at the temperature T and will be completely reacted, which is necessary for a physically
satisfactory reaction zone. At distances which are large compared with the effective thickness
of the flame the gas may be subjected to cooling and consequent changes of composition,
or it may be compressed against a barrier and so heated, but these cannot affect the rate of
burning. The only influence which can have any effect on the rate is one which acts in the
region where the reaction rate is appreciable.

The velocity of the reaction zone relative to the unburnt medium is MV,, which in the
application to cordite is the rate of recession of the surface of the cordite. The corresponding
relation between € and T is the solution of 3,06 with the proper value of M ; finally the (x, T)
relation can be found by substituting in 3,04. This provides a scale of distances for the
variation of T and e through the flame.

3.06. Equations for a special case

We now examine a special case which can be integrated explicitly by a method of successive
approximations. This case corresponds to a simple form of the reaction rate which appears
to be applicable to cordite. The method of successive approximations is not restricted to
this case.*

We limit our examination to a zone in perfect gases with constant specific heats per unit
mass. Though all these assumptions will be discussed more fully later, we may mention
here that the temperatures at which the reaction does not proceed at an appreciable rate do not
affect the rate of burning, and so we are assuming constancy of specific heat only at those high
temperatures in the flame at which most of the reaction takes place. The assumption is therefore
a good approximation for hot flames.

If Qm is the heat of reaction at constant pressure at the temperature T of the final products,
we have

H—Hn= (1 —¢) Qn+ (T—Tm) {Cs' (1 —¢) + ¢Cp} 3,07

* Comner has applied this method to the equations with diffusion, and Booth has used a similar technique in
his work on reaction zones in pyrotechnic mixtures (A.R.D. Theoretical Research Report 25/45).
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where C,’ is the specific heat of the reactant and C, that of the products, both at constant
pressure. It would be possible to integrate this case if the problem required this refinement,
but since a simpler case is adequate for our purpose we shall put C," = C, = C. We can

also write Q instead of Qm, since now the heat of reaction is independent of the temperature.
Thus finally

H—Hmn=(1—¢)Q 4 (T —Tw)C 3,08
so that

x dT .

M 7 = (1 —9Q+ (T —TaC 3,09

and substituting in 3,06,

de M (s, T)
dT ~ M2V {(1 —¢)Q + (T — Tw)C}

3,10

In a simple reaction in which molecules of molecular weight W give molecules of weight w,
the equation of state is

pv=[1;5+5] RT = (1 + nc) RT/W 3,11

W
where n = P 1, and R is the gas constant (82-06 atmos. c.c./mol. deg. C.).

If the reactant consists of more than one type of molecule with different molecular
weights this equation will have the same form but with a different value of ».

For a second-order rate from a bimolecular reaction, De/Dt is, by definition of the rate
order, proportional to (1 —¢)?/V, and empirically its dependence on temperature may be
expressed by a factor e—A/RT,

Hence
De B (1 —¢)? e ART

&V, T) =5 = < 3,12

The values of the constants will be discussed when the results are applied to particular cases.
Substituting in 3,10, we have

de AB (1 —¢)? e—ART 313

dl ™ M2VH(1 —e)Q + (T — Tm)C} ’
Using 3,11

de AB (pW)? (1 —€)? e—ART 314

dT ~— MZ(1 + ne)? (RT)? {(1 —¢)Q + (T — Tm)C}

3.07. Approximate solution of the equations in the special case

Near the hot boundary of the reaction zone, T — Ty and 1 — ¢ are small, and these terms
determine the behaviour of the solution. All other functions of T and ¢ in this equation can
be given the values corresponding to T = Tw and € = 1. The equation thus simplified has
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a solution which at large distances, where T — T’ and 1 — ¢ are sufficiently small, approaches
that solution of the original equation satisfying the boundary condition that T' = T, when
e = 1. This (g, T) relation can be used in the awkward coupling term Q(1 — €) 4+ C(T — Th)
but nowhere else in 3,14. The resulting equation can be integrated exactly. This provides
a second approximation to the exact solution of 3,14. We do not go beyond this order of
approximation, because comparison with step-by-step numerical integration of the exact
equation has shown that the accuracy of the second approximation is ample for our purpose ;
moreover, the differential equation in the next approximation is as difficult to solve analytically
as the original equation. It is not possible to stop at the extremely simple first approximation,
because the error in the rate of burning is a factor of about three. The error in the second
approximation depends chiefly on A/RTx, and has not been more than 15 per cent. in the
examples studied, in which A/RT» has been as low as 4. For A/RTx near 8, the rate is too
low by about 5 per cent.

Write 1 —e =§ and T — T = . The first approximation is the solution of the
equation

dg Dg? -
dn " QE—Cr 1o

where

B [pWT? exp (—A/RTw) ,
D =aTay [MR To 3,16

Write k£ = C/D and 6 = kJ% = k/(1 —¢).

Equation 3,15 can then be written

dn Q

%"= "D
of which we want the solution with 0 = wat y =0.
‘This 1s
h="Tn—T= —-g-cxp (0) Ef (— 0) 3,17

]
where Ei (—0) = J exp (— 0) d9/6
which is the ‘“ exponential integral ”’ and has been tabulated many times.*

Substituting in the (T — Tw) term in 3,14

de Bk pW 2 exp (— A/RT)
dT — Q62G(6) | MR (1 + ns):l T?

where G (0) = 1/6 4 exp (0) Ez (— 0).

* ¢.g., Jahnke and Emde, Tables of functions, 1933 Edn. p. 78 ; 1938 Edn. p. 1.
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This integrates to

f (1 + n— nk/8)2 G (0) db _"BR [” R] [exp( A/RT,) — exp (— A/RT)]

(1 + n)2 CTm RTwm | SXP (A/RTm) 318
k Q A "~ exp (A/RT) ’
using 3,16.
This solution has been made to satisfy the boundary condition at the hot end of the
flame, but does not necessarily do so at the beginning of the flame.
Imposing the condition that € =0, 1.e. 6§ =k, when T = T, gives as the equation to
determine M,

® CTm RTm
kJ.kI: 0 +1)9] G (0) db = Q A 3,19
since exp (A/RT,) is large compared with exp (A/RThr).
This can be written
2’! n 2 CTm RTm
a B g 0+ | g | 6B =S 5 3,20

where

g(k) = k fk G (6) do
gb) =k [ G (0) o

2i(k) = k3 »L G (0) 46/62

These functions are tabulated in Table 3.01 for the whole range of & likely to be encountered
in flames outside cordite.

To find the rate of burning M corresponding to given values of n, T, C, Q, A, B, p and
W, we calculate the right side of 3,20, then solve for k by trial and error. Since k = C/D,
we have finally

AB (pW)2 ke—A/RTm

M = ERT (0 F )

3,21

Since 3,20 does not contain the pressure p, for a given reaction k is independent of p,
and the rate of burning is therefore proportional to the pressure.

In using these equations one point must be noted. The gas constant R appears from
two sources : as it enters from 3,11, the equation of state of the gas, it has to be in the units

(unit of pressure) X (unit of volume of a mole of gas)
unit of temperature
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In other words, R is in the appropriate mechanical units. The activation energy A is con-
ventionally given in heat units, as calories per mole, so the R associated with A is in heat units,
namely calories per mole per degree. To prevent possible confusion we have written all
the formulae in terms of R and A/R, so that R is in mechanical units where it stands alone ;
in A/R, which has the dimensions of temperature, A and R can be in any consistent units, and
heat units will normally be used.

The relation between £ and T in the second approximation is

1—9a @2 7 n0+ () a0 | =g [ -2 R | 322

where 0 =k/(1 —¢).

For any set of values of A, Tw, Q, C and n, equation 3,20 gives %k, which can be used in 3,22
to find the T corresponding to any givene. The error in the (g, T) curve is small : comparison
with a numerical integration carried out with the accurate M showed that ¢ was too large by
3 per cent. at € =0-5, and the error was everywhere of the same amount except at low
temperatures. Here T tends to zero as the € of the approximate solution tends to zero, whereas
the numerical integration had been started with e =0 at a ‘‘ surface temperature ”’ greater
than zero.

This (g, T) relation can be used to find a value of M which is several per cent. better than
the second approximation itself. To do this we choose ¢, and ¢, in the neighbourhood of
0-4 and 0-6 respectively, and such that /(1 —¢,) and %/(1 —¢,) occur in Table 3.01. Equation
3,22 gives the corresponding temperatures T, and T, and hence we can estimate de/dT at
4 (T, + T,). Substitution into 3,13 gives M.

3.08. Variation of ¢ and T with distance in the special case

When the (g, T') relation has been found this can be used in the equation of heat conduction
3,09 to give the (x, T') relation. This supplies the scale of distances for the variation of ¢ and T.
Let the origin of x be taken at a temperature T,. Then

_ MdT
= f M{(I—e)Q+ (T — Tnm) C)

where ¢ is expressed as a function of T. In the special case considered above, and in most
possible cases, x will tend to infinity as T tends to Twm, and to negative infinity as I’ tends to T,
Theoretically, therefore, the reaction zone is of infinite thickness, though most of the reaction
occurs in a small distance. To obtain a measure of the thickness it is convenient to take the
distance between the points where ¢ = 0-1 and 0-8.

A first approximation to the (e, x) relation can be found from the first approximation to
the (e, T) law. From 3,09 and 3,15,

dE  MD,,
=t 3,24

3,23

with the solution

1 MDx
= E—1 = - + constant

1 —¢

and therefore an infinite flame thickness.
To get a second approximation it is easiest to tabulate € as a function of T, given by the
second approximation, and then to carry out a numerical integration of 3,23.

D
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i 3

In the first approximation the ‘‘ thickness of the flame "’ is proportional to
PP prop

A RTm l'{" n )Lk i
MD = p(W ) ((ﬁ) exp (A/2RTn) 3,25
As an example of the kind of result obtained, we show in Fig. 3.01 the value of ¢ and T
as functions of distance through a reaction zone at 10 tons/sq. in. The activation energy is
25 kcals/mole ; this and the other data are typical of those which are used in the application
to cordites. In this case the (e, T) relation was found by numerical integration of 3,14 and
x was then calculated from 3,23. As boundary condition at the cool side of the flame, it was
assumed that e =0 at 750°K., though the diagram makes it clear that de/dT is so small in this
region that the exact temperature assumed is of no importance. Actually a change of the
temperature at which ¢ = 0, from 1000°K. to 1200°K., produced in a typical example a decrease
of only 1 per cent. in the rate M.

T°K 3
/
2400 08
//
2000 / / 06
T
oo / o
L
1200 o2
300 0
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0 2 4 © 8 10

Distance from surface (10~° cm.)

Fig. 3.01 Reaction zone of typical propellant at 10 tons/sq. in.
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This diagram can be used at other pressures. For it can be shown that for a second-order
reaction the distance between two assigned values of temperature is inversely proportional to
the pressure. Hence the diagram can be regarded as valid for any pressure p tons/sq. i
giving ¢ and T as functions of xp/10.

Boys and Corner* have shown how, by combining the parameters in the general equations,
one may obtain the exact dependence of the rate on certain parameters without finding an
exact solution of the equations. The process is applicable to many possible forms of the
reaction rate. Without going into the matter more closely here, we may say that the methods
and aims are much the same as in the subject of similarity relations in internal ballistics,
sketched in Section 11.08.

One result which is of special importance is that the rate of burning and the thickness
of the flame are proportional to Al. This is needed in the theory of erosion of cordite, and is
true under very general assumptions ; in fact, Cornert has shown that all one needs is the
assumption that a mean value of A can be used throughout the flame. In particular, this
result holds for any form of the reaction rate, and not just for the second-order reaction studied
in this section.

For a reaction zone typical of those encountered in the application to propellants, the
distance between the planes where the reaction is 10 per cent. and 80 per cent. completed
is about 8 x 10—*/p cm. This is least for reactions with high final temperatures, though the
variation is only moderate ; for two cordites witle final temperatures of 2000°K. and 3000°K.
the widths of the flame were found to be in the ratio 1 : 0-7.

For details of the choice of suitable specific heats, thermal conductivities, and reaction
rates we must refer to the reports of Boys and Corner,} where also are given notes on the
numerical integration of the flame equations.

3.09. Application to the burning of cordite

It is assumed that the controlling rate in the burning of cordite is the rate of a gas reaction
going on between the products of the initial decomposition of the propellant. Passing through
the system normal to the cordite surface, we start with unreacted propellant at the initial
temperature ; there is a steep rise of temperature as we near the surface, and a corresponding
decomposition into intermediate products. These are assumed to be of fairly low molecular
weight and therefore form a vapour phase in which the slow, controlling reaction takes place.
Since the rate of burning of cordite is roughly proportional to the pressure, we must suppose
that we are dealing with a second-order reaction.

If the main reaction is not proceeding appreciably at the temperature of the surface
(compared with its rate in the hotter parts of the flame), then the rate of burning will be
independent of the surface temperature. The initial temperature of the propellant affects
the rate of burning through its effect on T, not because it is the point where e = 0. These
remarks are justified by the analysis of the preceding section ; the lower boundary condition
that € = 0 when T = T, is actually used in the form € = 0 when e—A/RTo is practically zero,
and we should get exactly the same results if we took ¢ =0 at T = T, where T, is any
temperature such that e—ART1 is negligible. The rate of burning is not affected by the
temperature variation before the controlling reaction has commenced apprec1ably, provxded
the same overall energy conditions are satisfied. Hence since we are assuming the main or
slow reactions to take place entirely in the gaseous layer it is the velocity of propagation of this

* Boys and Corner, Proc. Roy. Soc. A. 197 (1949) 90 ; also AC 1139/IB &,
+ Corner, Proc. Roy. Soc. A. /198 (1949) 388 ; also A.R.D. Theoretical Research Report 1/43.

1 Boys and Corner, AC 1139/IB8.
Corner, A.R.D. Theoretical Research Reports 1 and 2/43.
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flame which determines the rate of burning of the cordite. The surface temperature will
adjust itself to supply the necessary gases at this rate, provided that this is possible at some
temperature below the range in which the main reaction velocity is appreciable.

The variation of temperature in the solid before appreciable reaction occurs is governed by

A dT
M dx

where C; is the specific heat of the solid at constant pressure and 2 is its thermal conductivity.
If the primary decomposition in the solid evolves or absorbs only a small heat, 3,26 will still
be an approximation. Using it as such, taking a surface temperature T,, and a mean C,,

we have
T —T, [MC:x]

T,—T, P

=C,(T—T,) 3,26

where x is measured from the surface into the solid. For cordite A, is of order 8 X 10—* cals.
per sq. cm. per (deg. per cm.). Taking T, as 750°K., and T, as 300°K., we find that for a
typical propellant at p ton/sq.in. the temperature has fallen to 315°K. at a distance of no more
than 4 X 10—3/p cm. from the surface. Thus the ““hot zone” in the cordite is rather larger
that the effective breadth of the reaction' zone outside, and the ratio of these lengths is
independent of the pressure.

By writing down the equation for de/dx from the unimolecular primary decomposition
of NG or NC, the equation between € and T can be set up just as in the previous section. It
can be shown in this way that the primary decomposition is almost complete at 750°K. The
argument is only rough, since the experimental knowledge of the reaction refers to low
temperatures and small values of . However, it can be concluded that the cordite decomposes
long before it can reach a temperature at which unreacted cordite would sublime or vaporise.

In the previous sections we have assumed that the pressure is constant through the
flame. By calculating the momentum acquired by the product gases in their passage through
the zone, it is easy to show that this condition is satisfied to a very high accuracy for flames
outside cordite.

As disposable constants in our equations we have (i) the molecular weight of the inter-
mediate products, which is probably of order 75, (ii) the fraction of the total heat of reaction
liberated in the gas phase, and (iii) the activation energy A. The heat of the controlling
reaction is not known, but must be a substantial part of the whole heat of reaction. The
activation energy has a strong influence on the rate of burning, and there is little chemical
evidence on its value.

The other quantities appearing in the equations of the flame zone can be calculated from
the propellant composition. For example, the effective specific heat and thermal conductivity
can be obtained from the known final products and the assumed intermediate products ; the
latter choice is not of great importance for the dalculation. Finally, an upper limit for B can
be found from the kinetic theory of gas reactions. This must be reduced by a factor 1/« which
allows for the fact that the intermediate products are a mixture of some complexity. Only
part of the collisions will be between a molecular pair which gan take part in the controlling
reaction. The result is

2 " A
B — 4No (TrRT ) 327
Wa w
where o is the collision diameter of the reactants, N is Avogadro’s number, and T’ is a mean
temperature in the reaction zone.
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3.10. Comparison with experimental results

It was found that the closed-vessel rates of burning of a number of British cordites could
be represented by taking o = 100, an implausibly large value which was necessary to keep
the apparent activation energy approximately the same for all the cordites. A later theory
included diffusion, which reduces the rate of burning of a given gas mixture. With this theory
a value of « = 10 gave satisfactory results. This amounts to taking one-tenth of the collisions
as suitable for the rate-controlling reaction. The mean activation energy for seven propellants
not containing mineral jelly was 26-4 kcals/mole, which is reasonable for reactions between
unsaturated organic molecules. The activation energies had a total spread of 1-8 kcal/mole,
and it was shown that this range was not much larger than that introduced by unavoidable
uncertainties in the other constants used. The dependence on initial temperature is also
reproduced fairly well, although the theoretical value appears to be too small.

The following table gives a comparison of observed and theoretical rates, the latter being
calculated from a single set of constants for all the examples.

CompPARISON OF OBSERVED AND CALCULATED RATES oF BURNING

All rates are in inches/sec., for a single surface, at 10 tons/sq. in. and 300°K.
A = 264 kcal/mole ; a = 10.

Theory with Observed,
Cordite Tm, °K. diffusion closed vessel
HW. 3050 8:0 79
HSC. 3050 80 76
Ww. 2700 6-8 59
SC. 2500 57 5-0
Bofors. 2250 4-1 39
RDQ. 2230 36 4-2
RDNA, 1900 26 3.2

In these calculations it was assumed that the whole of the heat of the reaction was liberated
in the controlling process. The relative rates for different propellants are not sensitive to this
assumption.

This single-reaction theory is inadequate at pressures below 2 tons/sq. in., where reactions
in the solid have important effects. Transfer of energy through the flame by radiation has
been neglected in this theory. Experiment has shown the effect to be of some importance under
rocket conditions, but at gun pressures the effect on the rate is believed to be only a few per
cent.

3.11. Subsidiary effects at high pressure
At very high pressures the following effects enter :—

(1) COMPRESSIBILITY OF CORDITE

The theory gives M, the rate of burning in mass per second per unit of true area. The
rate used in internal ballistics is an apparent rate, based on the area at atmospheric pressure.
In other words, the practical rate takes no account of the real reduction of area when burning
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under high pressure. This practical rate is of course the more convenient for internal ballistics,
and we must correct the theoretical rate before comparison. This effect was pointed out by
Dr. H. H. M. Pike. It is easy to show that the apparent rate is reduced by the order of 10 per
cent. at 20 tons/sq.in.

(2) CO-VOLUME EFFECTS

The theory assumes that the gases in the reaction zone obey the perfect gas laws. It has
been shown that at 20 tons/sq.in. the rate falls about 30 per cent. below that calculated from
the perfect gas approximation.

(3) THERMAL CONDUCTIVITY

It has been assumed that the thermal conductivity of the gas in the reaction zone is
independent of pressure. This is true at low pressures, but as the pressure goes up the
conductivity must eventually approach that of a liquid, that is, it must increase. It has been
shown that the rate may be expected to be increased by about 20 per cent. at 20 tons/sq. in.

(4) PRESSURE-EFFECT ON SPECIFIC HEAT

The specific heat of the gases increases with pressure. This alters two quantities in the
equations: it increases the average specific heat, and reduces the maximum temperature Tom.
The magnitude of these effects can be calculated from Corner’s tables of pressure-corrections,*

and in this way it has been found that this correction reduces the rate of burning at 20 tons/sq. in.
by 20—30 per cent.

(5) CHANGE OF REACTION RATE

The formulae we have used for theoretical reaction velocities refer to molecular collisions
in a perfect gas. At high densities the environment of any particular molecule tends to become
less impermanent, and its motion changes from random motion with infrequent collisions,
to an oscillation in a ““ cell ” with occasional escapes to another. This would be expected to
alter the number of collisions effective in producing reaction, and in general this is so, but
theoretical investigations have led to the conclusion that the effect is not likely to surpass,
say, 50 per cent. It is not possible to estimate the effect as yet. All we can do is to give this
reminder that such an effect probably exists.

(6) DIFFUSION

At normal pressures the diffusion coefficient, D, is known to be inversely proportional
to the pressure p. This has been used in the theory with diffusion, and is essential for the
result that the rate is still proportional to the pressure when diffusion is included. At pressures
of order 20 tons/sq.in. one must expect a change in Dp, probably a decrease, tending to increase
the rate of burning by about 10—20 per cent.

To summarise these effects, we may say that on balance they tend to reduce the ratio
M/p at high pressures, by an amount which can be of order 20 per cent. at 20 tons/sq.in. The
observed effect is the sum of a number of effects with opposite signs, and there is no reason why
all propellants should show the same behaviour at high pressures. A rate increasing faster
than the pressure is not excluded, but seems unlikely.

3.12. Theory of the erosion of cordite

The rate of burning of cordite is not simply a function of the pressure on its surface, but
depends also on the transverse velocity of gas across it. The rate appears to be independent of
the nature or temperature of this main stream, except in so far as these alter the hydrodynamic
nature of the flow (by altering the Reynolds number, for instance). In any given apparatus

® Corner, Proc. Phys. Soc. 58 (1946) 737 ; also A.R.D. Theoretical Research Report 8,43 ; AC 5646/BAL 147,
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the rate of burning can be expressed as a function of pressure and velocity ; the differences
observed between experiments in different set-ups are sufficient to suggest that the gas velocity
is not the real variable involved. It is probable that the turbulence is the underlying factor
controlling the *‘ erosion ”” of the cordite, and that the velocity at points in a given apparatus is
simply a measure of the turbulence there.

Erosion of cordite was first studied properly in connection with high-performance rockets,
in which it is of great importance. It had, however, been noticed earlier in partly-burnt grains
of tubular and multitubular gun propellant. Its significance for the theory of internal ballistics
is indicated in Sections 4.10 and 5.11; here we shall merely mention the early effort to
explain the effect, made by Lennard-Jones and Corner.*

They assumed that the most important part of the effect came from the turbulence increasing
the effective heat conductivity in the reaction zone outside the cordite ; taking the simple
theory sketched in Section 3.04, they solved the problem for flow down a cylindrical conduit
through a slab of cordite. Their formulae have not been found quantitatively successful at
rocket pressures, but this is not surprising ; no single-reaction theory appears to be sufficient
to cover burning at such low pressures, and moreover diffusion was neglected, which Cornert
has shown must make a considerable difference to the results. Qualitatively, their results
showed a rate varying with velocity to roughly the right extent, and they were able to show
that erosion should decrease rapidly on going to hotter propellants. This has since been
confirmed by experiment. Physically, the effect can be thought of as a shrinking of the flame
nearer to the solid cordite ; since there is a laminar layer close to the surface in which turbulence
does not act and in which therefore the conductivity is normal, the moderate shrinking of the
flame causes an exaggerated decrease of its sensitivity to turbulence. Indeed, it is possible
to estimate the characteristics of a cordite which would show practically no erosion ; this
propellant would be hotter than any present propellant, though not by any striking amount.

The theory of the erosion of cordite could certainly be developed considerably beyond
its present point, which lags behind the stage reached by the theory of ordinary burning.

* Lennard-Jones and Corner, AC 1173/IB19 ; also Corner, Trans. Fara. Soc., 43 (1947) 635.
t+ Corner, A.R.D. Theoretical Research Report 1/43.



CHAPTER 1V
THE FORM FUNCTION

4,01, The law of burning

The manner in which the charge burns is considered in the following sections. For
present purposes we shall consider that the charge consists of a number of geometrically similar
pieces of propellant (usually referred to as propellant grains). The outer layers of these grains
are brought to the temperature of ignition (about 170°C.) by the heat supplied from the igniter.
With a well-designed ignition system, each grain will be ignited over its whole surface in a
very short time-interval and we suppose here that all parts of the surface of the grains reach
the ignition temperature simultaneously. The propellant gases are evolved at a high
temperature and the heat from these gases brings successive layers of the grains to the
temperature of ignition. Careful control during manufacture ensures that the grains are very
nearly homogeneous and there is little reason why they should burn preferentially in any
particular direction. We assume therefore that the surface of each grain recedes parallel to
itself as burning proceeds.

The law of burning by parallel layers is known as Piobert’s law and is generally adopted
by internal ballisticians. Some confirmation that such a law is nearly obeyed in practice is
obtained by firing charges such that the propellant is not all burnt while the shot is still in the
bore : pieces of burning propellant are thrown from the gun, burning is arrested and the
partially burnt pieces are recovered. The shape of such unburnt grains is, in general (but see
Sections 3.12 and 4.10), found to be very well preserved. In other words, simultaneous
ignition over the whole surfaces of the grains and burning by parallel layers seem to be
reasonable assumptions.

4.02. The theoretical form function

Defining the *“ size ” D of the propellant grain as the least thickness to be burnt through
for complete combustion of the grain,* denoting by f the fraction of D remaining at time ¢,
by =z the fraction of weight burnt at time ¢ and by S the surface area of the grain at this
instant, it is possible to relate z to f or S to 2. 'The relationships depend on the geometrical
shape of the grain and it is British practice to use the (z, f) relation while some continental
ballisticians employ the (S, z) relation. Either relation is known as the form function.

We can write therefore 2 == ¢(f) and since 2 = 0 when f = 1 and z = 1 when f =0,

z =9(f) = (1 —f) (1 + 6f) 4,01

where 0 is a function of f.

The various forms assumed by ¢( f) for the shapes of propellant in common use are discussed
below. Since S is clearly proportional to (dz/df) and since initially S = S, (say) when f = 1,
the (S, z) relation is easily obtained from the equation

S/S, = (dz/df)/(dz/df), 4,02

We shall see that 6 is practically constant for shapes in general use ; the (S, z) relation then
takes the form

S/S, = [1 — 402/(1 + 6) 4,03

* The web of multitubular grain is usually denoted by D and called the ‘* size,”” but the above definition does
not hold in this case.

40
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When 0 is positive the burning surface steadily decreases ; burning is then said to be
degressive and shapes with positive 6 are described as degressive shapes. When 6 is negative
the surface increases and the burning is said to be progressive.

4.03. Cylindrical (often called “ cord’’)

Here D is the diameter and if we assume the length of the stick to be AD, the initial
volume of the cylinder is ®AD3/4. At time ¢, the diameter is fD and, assuming burning
takes place by parallel layers, the length will be AD — (1 —f)D. Hence at time ¢, the
volume remaining is (A — 1 + f) = f2 D3/4.

Weights being proportional to volumes, the fraction burnt is therefore given by—

2z = (Initial volume — volume remaining at time #)/(Initial volume)
— {mADY4 — (A — 1 + f) nf? D4 }/(=AD"/4)
=A=NQA+f+N 4,04

In this case z is a cubic in f and the burning is sometimes referred to as being three-
dimensional. Usually, however, the grains are long compared with their diameter® and f2/)
is therefore small. If we neglect this term, we can write, for long cords

z2=01—f)(1-+/) 4,05

and this is the form function usually adopted for propellants in cord form.
From 4,03 we have, since 0 = 1,

S/S, = (1 — 2)i 4,06

giving the form function usually adopted by continental ballisticians. With this shape, it is
clear that the burning surface decreases as burning proceeds.

4.04. Tubular
Let the wall-thickness of the tube be D, the mean radius R and the length AD. At time ¢,

the wall thickness is fD and the cross-sectional area is therefore 2rfDR. The length at the same
moment is AD — (1 — f)D, hence the volume is 2zD?Rf (A —1 4 f). The 1nitial volume,
i.e., the volume when f = 1 is 2xD? RA. Hence the fraction burnt at any moment is

=1—f =1+
=(1—/) (L +f) 407
For long tubes, A is large and we have
z=1—f 4,08
so that here 0 = (0. Hence, from 4,03,
5/8, =1

and in this case the burning surface remains constant.

* A is greater than 200 in many Service charges.
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It is worth noticing that for tubes of length equal to the annulus (A = 1), the form function
4,07 reduces to

e=(1—f) A+
and such tubes, theoretically, burn precisely like long cords.

4.05. Slotted tube -

We assume that the tube is long compared with the wall thickness (this is usually the
case in practice) so that decrease in length during burning can be neglected. The slot is assumed
to be formed by two radii inclined at an angle 2w.

c
\
\
\\
Y i \ \
- 'LQLr__L___J
O A B

Fig. 4.01

Assuming burning by parallel layers, a side of the slot will be as shown at CD in Fig. 4.01.
If r, and r, are the radii at any moment and R is the mean radius

rn=R+3}fD r,=R—4}fD 4,09
If OX is perpendicular to CD from the centre O,
OX =3(1—f)D =r,sin ¢ =r,sin ¢ 4,10

where ¢ and ¢ are the angles shown.
The cross-sectional area remaining at any moment is

ri(r—w—0) —r2(n—o—{¢)—r r,sin (¢ — @)
The initial cross-sectional area is given by Q = 2RD (r — «) and
(r2—r?) (r — ) =2fRD (7 — ) = fQ
Hence, neglecting the decrease in length of tube, the fraction burnt at any moment is

z=1—f+[n?o—r2 ¢+ rrsin({—9)]/Q 4,11
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Since ¢ and { are reasonably small, a good approximation to the bracketed term is
obtained by replacing the angles by their sines and putting the cosines equal to unity. The
bracketed term then becomes

r2sing —r,2sin ¢ + r, r, (sin ¢ — sin @)

= (r, —71;) (r, sing + 7, sin ¢)

=f(1—f)Db?
using equations 4,09 and 4,10.
Hence
x=(1—f) (1 +/D¥Q) 4,12
and
6 = D%Q

The (S, z) relation follows at once from 4,03.
The error in the value of the bracketed term due to the above approximation is

r? (e —sing) —r,2 (¢ —sin §) + r, rysin ¢ (1 — cos ) — r, r, sin § (1 — cos @)

and an estimate of its size may be obtained by retaining terms of the third order in sin ¢ and
sin §. It then becomes

ar?sindo —ir2sin®y + dr7,singsin? ¢ —}r r,sin ¢ sin?ep

which, using 4,09 and 4,10, reduces to

f(1—f¢ D!
24 (RT— 1/ DY)

Dividing by Q gives the corresponding error in z as

f(1—f) D’
48R (RZ—} f7D?) (r — w)

This is zero when f = 0 and 1 and the maximum value of f(1 —f)* for 1>f>0 is
about 0-1 ; D/R is usually about unity and 1 — w is about 3. The value of this term, therefore,
is not likely to exceed 0-001. Terms of higher order will be correspondingly smaller and we

conclude that the approximation is adequate.

4.06. Ribbon
Here D is the thickness and, if the width of the ribbon is pD and its length AD, the initial

volume is AuD? and the volume at time ¢is {AD — (1 —f) D} {uD — (1 — f) D} fD.
Hence,
s=1—f(—1+1) (a—1+N/0w)
=(1=ND+f (7 +2) =1 =1)/(w)] 4,13
Generally, A will be large and we can write

a=(1—1) 1+ 4,14
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4.07. Square flake
This is a particular case of ribbon in which A = y, and as the side of the square is usually
large compared with the thickness of the flake, equation 4,13 gives, neglecting 1/u?,

2 =(1—f) (1+2f/u). 4,15

4.08. Multitubular

Here the grain consists of fairly short cylinders pierced by seven equally spaced holes
parallel to the length of the cylinder. The specification states that the diameters of the holes
are 0-1 that of the cylinder and the length of the cylinder is 2-25 times that of its diameter.

The appearance of the end section of a grain is shown in Fig. 4.02. Denoting the
diameters of the holes by d and the distance between any two holes and between any of the
outer six holes and the curved surface of the grain by D (called the web) we note that the grain
is not all burnt when a distance D has been burnt through. Using, as usual, f for the fraction
of D remammg at time f, we see that, when f =0, twelve curvilinear tnangular prisms
(called *slivers ") remain unburnt. It is convenient to work out the (2, f) relation in two stages
—(1) before the web is burnt, (ii) during the burning of the slivers.

Fig. 4.02 Fig. 4.03

(i) BEFORE THE WEB IS BROKEN DOWN

The outer diameter is (4D + 3d) and since this equals 10d, we have D = 1-75d. The
length of the grain is, say, AD and since this is 2:25 times the outer diameter, we deduce that
A = 12-86. The original volume of the grain is ®AD [(10d)? — 7d?], which, on substituting

for A and D, is 16444®>. The volume when a fraction f of D remains (cross-section shown
in Fig. 4.03) is

}=[\D—(1—f)D][{10d — (1 —f) D}* —7 {d + (1 — f) D}3]
= (2464 + 1590 f — 167-2 f2 — 25-25 f3) &*
on substituting for 2 and D. Hence
z =850 — 967 f + -102 f2 + 015 f3
= (1 —f) (-850 — -117 f — -015 f?) 4,16

This is the (z, f) relation during the first stage of the burning, and by putting f —= 0, we
see at once that 85 per cent. of the grain has been burnt when the web is consumed.
The (S, z) relation, if required, can be found immediately from equations 4,02 and 4,16.



We find

Computation from this and 4,16 gives

THE FORM FUNCTION

S/S, = 1:347 — 284 f — 063 f?

f 1-0 09 0-8 0-7 0-6 0-5 0-4 0-3 0-2 0-1 0-0
z 000 -073 -149 229 310 -394 -481 571 -662 755 -850
S'Sy | 1-000 | 1-040 | 1-079 | 1-117 | 1-154 | 1-189 | 1-223 | 1-256 | 1-288 | 1-318 | 1-347

(ii) AFTER THE WEB HAS BEEN CONSUMED

In Fig. 4.04, O, A and B are the centres of the central and two of the outer holes.
triangle OAB is clearly equilateral of side 2a =D + d = 2:75d. At the beginning of this
stage the curvilinear triangles DEF, DE'F’ remain, the radii of the sides DF, FE, ED, DF’

and DE’ being a, while that of E'F’ is 3a.

The

As burning proceeds the triangle DEF shrinks into the triangle XYZ, while the triangle
DE’F’ shrinks into PQR ; these triangles are formed by circular arcs concentric with the
When the radius of the
side XZ is 7, that of PQ is r, while that of QR is 3¢ — (r — a), i.e., 4a — », since burning is

corresponding arcs forming the sides of the triangles DEF, DE'F".

assumed to be by parallel layers.

o
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If 4, » and @ are the angles shown, then clearly 7 = a sec . The triangle OAQ enables y
and ¢ to be expressed in terms of w, thus

(2a) + (4a—r)* —7r* S5—2secw

€os = 4a (4a — )  4—secow

4,17

(2a) +- 12 —(4a —r)* _

7y 2 —3secw 4,18
ar

cos (n/3 + x + @) =

Complete combustion of the grain occurs when ¢ = 30° and equation 4,17 then gives

S—2sec w
Tswcw — VS

leading to w = 42° 25’. During this stage of burning @ therefore varies from 0° to 42° 25’
and using equations 4,17, 4,18 we find

w o (radians) pA Y. (radians) ¢ @ (radians)
0° -0000 120° 00’ 2-0944 0° 00’ 0000
5° -0873 106° 207 1-8559 2° 55° -0509

10° -1745 92° 38’ 1-6168 5° 517 1021
15° -2618 78° 52’ 1-3765 8 517 1545
20° -3491 65° 00’ 1-1345 12° 01 -2097
25° 4363 50° 58’ 0-8896 15° 22* -2682
30° -5236 36° 44/ 0-6411 18° 59° -3314
32° 30° -5672 29° 317 0-5152 20° 527 3642
35° 6109 22° 14’ 0-3881 22° 59’ -4012‘
37° 30° ‘6545 14° 517 0-2592 25° 14/ -4404
40° 6981 7° 20" 0-1280 27° 32¢ 4806
42° 257 7403 0° 00’ 0-0000 30° 00’ -5236

As r and o increase, the length of the triangular prisms is given by
L=A—1)D—2(r—a)

since L = (A — 1) D at the beginning of this stage, and burning proceeds for a distance (r — a)
at each end. Writing D = 1-754, ) = 12-86, 24 = 2-75d, r = a sec w, we have

L =(23:5—275sec w)d 4,19
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Computation gives

w L/d w L/d w L/d
0° 20-75 20° 20-57 35° 20-14
5° 20-74 25° 20-47 37° 30’ 20-03

10° 20-71 30° 20-32 40° 19-91

15° 20-65 32° 30’ 20-24 42° 257 19-77

The area of the triangle XYZ is given by
A XYZ = A ABC — 6 A AXD — 3 sector AXZ

= 1-891 d2[{/3 — 3 tan & — 3 (n/6 — )]

Computation gives

© A XYZ/d? ® A XYZ/d?

0° 3050 20° 10893

5° 2852 25° -0270
10° -2333 30° -0000
15° -1638

Denoting the volume of these prisms by V(xyz),
V(xyz)/d? = (6 L/d) (AXYZ/d?)

and the tabulated values permit computation of V(xyz).

47

4,20

4,21

There now remain to be calculated the volumes of the six prisms typified by PQR.

We have

A PQR =2 A PQM = 2 [sector OQM — A OLP — sector APQ + A ALQ]

But,
sector OQM = } (4a —7)? (n/6 — 9) = } a? (4 — sec w)? (x/6 — )
and from the triangle ALO,

OL = 2a sin (/3 + o) /sin (=/3 + o + ¢)
and
OP =OD + DP = a (/3 + tan w)
Hence
a? (1/3 + tan w) sin (r/3 + ) sin (/6 — o)

A OLP = sin (t/3 +  + @)

4,22

4,23

4,24
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and the table giving ¢ in terms of w permits the tabulation of A OLP.

Also,
sector APQ =312y =1 a?ysec w 4,25

and with the help of the table giving x in terms of w, we can tabulate the sector APQ. Finally,
the triangle ALO gives

AL = 2a sin ¢/sin (n/3 + o + @)
and
A ALQ = ra sin ¢ sin y/sin (/3 + © + @)
= a? sec w sin ¢ sin ¥/sin (7/3 + © + @) 4,26

giving A ALQ in terms of » when the numerical relations between ¢, y and w are used.
Equations 4,22 to 4,26 enable the tabulation of the area of the triangle PQR to be performed,
the substitution a = 1-375d, giving A PQR/d? in terms of w. The results are :—

w A PQR/d? w A PQR/d? w A PQR/d?
0° 1-675 20° 1-032 35° 0-199
5° 1-618 25° 0-752 37° 30’ 0-096
10° 1-493 30° 0-458 40° 0-025
15° 1-286 32° 30’ 0-326 42° 25 0-000

Denoting by V(pgr) the volumes of the six triangular prisms typified by PQR, we have
V(pgr)/d* = (6 L/d) (A PQR/d?) 4,27

and we can thus tabulate V(pgr)/d? in terms of w.
The fraction z burnt is then given by

x = 1 —[V(pgr) -+ V(xy=)]/1644d" 4,28

1644d* being the original volume of the grain. Equations 4,28, 4,27, 4,21, 4,19 and the
tabulated values given above permit the calculation of z as the numerical function of « shown

below.
We now have to relate f with . From Fig. 4.04,

r=aseco
and the fraction f of D remaining is given by
f = (2a —2r)/D = 2a (1 — sec w)/D
But 2a =D 4+ d and d = D/1-75, so that
f=(11/7) (1 — sec ) 4,29
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It is to be noted that f = 0 at the beginning of and is negative during this stage of the
burning. The final value of f is (11/7) (1 — sec 42° 25’) = — 0-557. Equation 4,29 permits
the calculation of f as a function of w and the (2, f) relation is shown in tabular form below.

m V (xyz)/d® | V (pgr)/d? % f
0° 37.97 208-5 0-851 0-000
5° 35-49 201-3 0-856 —0-006

10° 28-99 1855 0-870 —0-024
15° 20-29 159-3 0-891 —0-055
20° 11-02 127-4 0-916 —0-101
25° 3-32 92-36 0942 —0-162
30° 0-00 55-84 0-966 —0-243
32° 30’ — 39-59 0-976 —0-292
35° — 24-05 0-985 —0-347
37° 30 — 11-54 0-993 —0-409
40° — 2.99 0-998 —0-480
42° 25’ — 0-00 1-000 —0-557

The complete (2, f) relation is given by the curve of Fig. 4.05.*
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Fig. 4.05

® This curve is also given by Tschappat, Text-Book of Ordnance and Gunnery, Chapman and Hall Ltd. (1917).
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4.09. Approximations to the form function for multitubular
We have seen that the form function up to the instant when the web is broken down is

given by 4,16, viz.
z = (1—f) (-850 — -117 f — -015 f?)

and that during the second stage of burning the function is somewhat complicated. At the
instant of breakdown of the web, 85 per cent. of the grain is consumed and therefore the above
function holds during the greater part of burning. For convenience in the analytical solution
of the ballistic equations, it is useful to enquire if a form function of the type

s=(1—/)(1+0/) 4,30

can be used to cover the whole burning. A form function of this type holds, with different
numerical values of 0, for all the other shapes generally used in practice, and if we can derive
an approximate function of this type for multitubular, we can use the quadratic form function
4,30 in the ballistic equations and develop one system of internal ballistics covering all shapes
of propellant.

From 4,03,
z =[1—(5/Sy)3] (1 + 6)%/46 4,31

and the best fit (least squares) for an expression of the type 4,31 with the (S, z) relation up to
z = 0-85 is secured by taking 6 = — 0-1715. With the true multitubular shapes, 85 per cent.
of the grain is burnt when a thickness D of propellant has been consumed, while with a
hypothetical shape possessing a form function of the type 4,30, 85 per cent. of the grain is burnt
when a fraction f of the least thickness remaining is given by

80 =(1—/)(1+6/)

which, with 6 = — 0-1715, gives f = 0-131.
With the hypothetical shape, therefore, if D’ is the least thickness to be burnt through for
complete combustion, the thickness burnt through when 85 per cent. of the grain has been

consumed is 0-869D’ ; equating this to the actual web size D, we have
D’ =1-15D
Hence, an approximation is secured by using a form function
z=(1—f)(1—0172f) 4,32

and using 1-15D instead of D in the ballistic equations. For comparison with the true form
function of Fig. 4.05, this is equivalent to plotting the (z, f) relation from

z=(1—f)(1—0172f) 4,33
11151 —f) =1—Ff

Values calculated from 4,33 are shown in Fig. 4.05 as circles.

Experiment has shown that some propellants made in this shape appear to burn with a
surface area which decreases slightly in the early stages and increases slightly later. In such
cases it is best to take 6 = 0 and this has the advantage of greatly simplifying the solution

of the ballistic equations.

where



THE FORM FUNCTION 51

4.10. Summary
For shapes in general use, the form function can be written

s=(1—=0Q1+6) 4,01

the various values of the form coefficient 6 for the different shapes being shown in the table
below. The table also shows the geometrical quantities which represent the least thickness
to be burnt through for complete combustion of the grain, these quantities generally being
referred to as the *“ size "’ of the propellant.

THEORETICAL VALUES OF THE ForRM COEFFICIENT

Shape of grain “Size” D Form Coefficient Remarfls
Long cord Diameter 1
Long tube Wall thickness 0
Long slotted tube Wall thickness D?/Q ) =cross sectional

area of tube

Multitube 1-15 X web — 172
Ribbon Thickness 1/ wD = width of ribbon
Square flake Thickness 2/ D = side of square

It must be remembered that the values of 0 given in this table are based on the assumptions
of simultaneous ignition of the whole grain surface and that burning takes place strictly in
accordance with Piobert’s law. Except for the tubular shapes these values of 0 are generally
found to be satisfactory in practice.

Ignition of the interior surface of long tubes seems to be delayed until the gas pressure
reaches some 2 to 3 tons/sq.in. The inner surface then seems to burn at a high rate due probably
to the extra transfer of heat by moving gases whose velocity is small at the centre and large
at both ends of the tube. The holes thus burn faster at the ends of the tube and become
bell-mouthed giving a greater rate of burning, but this effect seems to die away as the hole is
enlarged. At a later stage, the internal surface in the bell-mouthed ends expands to meet the
contracted external surface while there is still an appreciable annular thickness in the middle
of the stick. When this occurs the stick rapidly shortens in length and so decreases in surface
area. This shape therefore presents an effectively decreasing burning surface rather than a
constant one and a form coefficient as high as 0-4 has been found necessary to explain some
experimental results. There is some evidence (admittedly somewhat scanty) that 6 varies as
the length of the tube and its rate of burning and inversely as the size of the central hole.

Similar considerations apply to multitubular, although the comparatively short length
of the grains should give a form coefficient closer to the theoretical value than is the case with
long tubes. 6 = 0 has been suggested as a suitable value and this choice of 0 has the
advantage of rendering the solution of the ballistic equations comparatively simple.

Slotted tube burns closely in accordance with Piobert’s law and the theoretical value of 6
1s usually- adopted.
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4.11. Variation of burning surface as burning proceeds
The general (S, 2) relation corresponding to the quadratic form function z=(1-f) (14-6f)

is given by 4,03
2z =[1—(S5/Sp)*] (1 + 6)%/46
The variation of S/S, with z for the various theoretical values of 6 given in the table is

plotted in Fig. 4.06, the values of A, etc., being taken from the dimensions of typical propellants
in Service use.
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CHAPTER V
COMBUSTION AT CONSTANT VOLUME

5.01. For the experimental determination of the ballistic properties of propellants a closed vessel
is used ; this is a vessel in which propellants can be burned under constant-volume conditions.
It is of robust construction, capable of withstanding the high pressures resulting from such
experiments. Facilities are prowded for inserting and igniting the charge, recording the pressure
developed against a time scale and releasing the gases at the end of each experiment.

A full description of such a vessel and of the methods used for measuring pressure is given
in Chapter XIII. In the present chapter we shall consider the analysis of the experimental
results obtained from closed-vessel firings.

Measurements are made in a closed vessel instead of in a gun in order to avoid the
complications due to the dynamics of the projectile and charge and the inevitable errors arising
therefrom.

5.02. Objects of closed-vessel experiments

The main objects of closed-vessel experiments are :—

(1) To verify the values of the force constant F and co-volume & of the propellant
as calculated by the method of Chapter II.

(2) To determine the rate of burning of the propellant.

(3) To verify the more doubtful values of the form coefficient 6 as calculated by the
methods of Chapter IV.

With regard to (1), since F is sensitive to slight variations in propellant composition,
particularly in the moisture content, the experimental values of F should be more reliable than
the calculated values. The co-volume, on the other hand, is not sensitive to small changes
in composition and can only be derived experimentally by a difference process ; the calculated
values are therefore more reliable.

With regard to (2), it will be appreciated from Chapter III that the theory of propellant
burning has not yet reached the stage when a thoroughly reliable law can be established on
theoretical grounds alone. An experimental law for each propellant must therefore be
determined and for this reason rate-of-burning experiments are the most important class of
experiments performed in the closed vessel.

With regard to (3), the experimental determination of 6 is desirable in the case of tubular
and multi-tubular shapes, which do not always burn strictly in accordance with Piobert’s law.

The closed vessel is also used to check variations in performance of Service propellants and
to test experimental compositions. The former involves a simple comparison with a standard
lot while the latter is an aid in the development of new types of propellant for specific purposes.

5.03. Experimental determination of the force constant and the co-volume
The equation of state of the propellant gases is (equation 2,15)

p (V—b) = TF/T,
In the closed vessel, if there is no loss of energy or heat, this reduces to
p(V—b)=F 5,01
which is the law of Noble and Abel.
53
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To determine F and b all that is required is a series of corresponding values of p and V.
These are obtained by firing a number of charges of different weights and recording the
maximum pressures. Since V is the volume per unit mass of gas, its value when the charge
is completely burnt is K/C where K is the capacity of the vessel and C is the charge weight ;
this value corresponds to the maximum pressure obtained. V is then plotted against 1/p
and the best straight line is drawn through the points. The slope of the line gives F and the
intersection on the V axis gives b. Alternatively, the theoretical value of 4 is used and F is
calculated direct from 5,01, the results being averaged for a series of firings.

Unfortunately, the ideal of no heat and energy losses cannot be realised in practice and
corrections have to be applied to allow for these losses. These will now be considered.

The maximum pressure in a closed vessel is a little less than that which would be realised
under ideal conditions for two reasons. In the first place the vessel expands elastically and so
there is a small adiabatic expansion of the gases causing a small pressure drop. This volume
expansion is mainly due to stretching of the steel but there is also a contribution due to the
bulk compression of the vaseline and luting packing used round the pressure gauge and firing
pins. The total volume expansion may be readily calculated and is usually under 1 per cent.
of the initial volume. It is, of course, proportional to the pressure, so that the energy loss and

so the consequent fall in pressure is proportional to the square of that pressure at any instant ;
thus

— dp/p = ydK/K = yap
so that

— dp = yop? 5,02

where 1/c is the elastic constant of the vessel, being the theoretical pressure required to double
its volume.

The other source of energy loss is due to heat transfer to the vessel walls by radiation,
convection and conduction. There is a small amount of radiation from the hot gases which
will give a heat loss almost proportional to the time of burning and therefore to the size of a
given propellant.* There is also a very intense radiation, due to chemi-luminescence, coming
from the reaction zone, the amount of radiation being nearly proportional to the mass rate of
burning, but this radiation will only reach the walls in the early stages of burning when the hot
gases are not dense enough to be opaque.

Heat transfer by convection to unit area of wall surface will proceed at a rate nearly pro-
portional to the product of gas density and velocity, since the wall surface remains at a much
lower temperature than the hot gases throughout the burning period. The gas velocity at
any point will increase in proportion to the mass rate of burning divided by the gas density,
and the gas density is nearly proportional to the mass burnt. We find, therefore, when we
integrate over the whole burning time, that the total convective heat loss should increase nearly
in proportion to the mass burnt and be independent of the time of burning. It should also
increase nearly in proportion to the absolute gas temperature, because the wall surface
temperature remains quite low. Since the specific heat per unit mass of gas is found to be
very nearly the same for all the usual propellant compositions, we see that convective heat
loss should reduce the final pressure by a percentage which is constant for all propellants
and sizes and for all charge weights but which increases in proportion to the ratio of wall
surface to capacity.

® See Section 5.05.
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For slow-burning propellants, the gas velocities will be very small and their components
tangential to the vessel walls smaller still. In such a case we should expect heat losses by simple
conduction, at a constant rate independent of gas density.

There is also a small pressure drop due to the fact that the gas which fills the channel leading
to the release valve is cooled immediately to near room temperature so that the effective volume
of this channel is nearly ten times as great as its actual volume. This volume is very small
however and the consequent correction much less than 1 per cent. It is independent of the
time of burning of the propellant.

To sum up, we should expect the total heat loss during the burning of a given charge
weight of a given propellant to consist of two main terms, one being independent of the time of
burning and the other being nearly proportional to it, or to the propellant size D.

Some early experiments were performed by Duncan and Craig* to determine the correction
to pressure for heat and energy losses. They used a special vessel in which the capacity and
ratio of surface area to capacity could be varied. They fired charges of four different sizes
of cord at the same loading density in four different capacities. Plotting pressure against size
for each capacity yielded four straight lines from which pressures for zero size, i.e., zero time
of burning could be deduced by continuing the lines back to the pressure axis. These zero-time
pressures were then plotted against the ratio surface/capacity and another straight line resulted,
from which they deduced the uncooled pressure.

Later experiments of a similar nature, but with more accurate means of measuring, yielded
similar results. The figures normally used to correct observed maximum pressures both for
heat loss and vessel expansion are :(—

Propellant Percentage correction
N or NFQ 37 + 18D
NQ or NQF 2:5 + 15D
WM or SC 0-9 4 15D
HW or HSC 09 4+ 15D

where D is the size in inches and the correction is additive.

The fact that the heat loss does not increase in direct proportion to the time of burning
was shown experimentally by Crow and Grimshaw.t These authors suggested that the total
heat loss increased in proportion to the square root of the total time of burning, but their results
could be fitted equally well by a linear relation of the form given above.

5.04. Combustion phenomena in a closed vessel

When a propellant charge is burnt in a closed vessel the conditions are usually so chosen
that the energy lost by the gases during combustion is very small and, as we have seen, can
be allowed for in a simple manner. In other words, the process is an adiabatic one, and all
the heat liberated by the chemical reaction is used in heating the gases. Assuming uniformity
of temperature as well as pressure throughout the gases, this temperature and pressure can
be calculated from the mass, composition, heat of formation and initial temperature of the
propellant charge, and the volume of the closed vessel, using thermochemical data and methods
as explained in Chapter II.

Actually there is, at first, considerable lack of uniformity of temperature. If we consider
the combustion of any given small quantity of propellant during the reaction, the gases evolved
will be formed under practically constant pressure, and will make room for themselves by
compressing the gases previously burnt. Each element of gas will therefore be formed under
constant-pressure conditions, and its initial temperature will correspond to combustion under

* Research Department Report No. 15 (1911).
1 A. D. Crow and W. E. Grimshaw. The equation of state of propellant gases, Phil. Trans. A. 230 (1932) p. 39.
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those conditions. Subsequently the element of gas will be compressed adiabatically to make
room for the gases formed in the later stages of the combustion. Different elements of gas

will start at almost the same temperature, but will subsequently attain temperatures given
by

T/T, = (p./p)—"Y 5,03

where p, is the final pressure and p the pressure under which a given element was formed.
Since p is different for every element so will T be. In fact the first element, which was
formed under a very low pressure, will attain a very high temperature indeed, while

the last element to be formed will suffer no adiabatic compression at all and will remain
at temperature T,.

Of course, both during and after combustion heat transfer and gas mixing will tend to
equalise the temperature throughout the closed vessel to T, the value calculated from thermo-
chemical data for a reaction under constant-volume conditions. This temperature equalisation
continues for a short time after combustion is complete and in the case of hot propellants this
gives an exaggerated rate of pressure fall for a very short time, so giving a sharp maximum
on the pressure-time curve. The maximum is less sharply defined for cool propellants. This
may be due to the fact that the specific heats of the gases increase with increasing temperature,
so that if there were no heat losses the mean temperature and hence the pressure would rise
during the equalisation process. This effect must also operate in the case of hot propellants
but is probably over-compensated by high radiation losses from the hot regions.

The variation of temperature throughout the closed vessel implies that the gases near the
vessel walls in the early stages of combustion will have a very high temperature and so lose
heat to the walls very rapidly. We must therefore expect the rate of heat loss to vary
considerably during the combustion period. Furthermore it would be impossible to attach

any precise meaning to measurements of gas temperature during burning by optical or other
physical methods.

A second and more important conclusion to be drawn from this discussion of the combustion
phenomena is that no matter how the pressure is changing, any given small element of gas is
formed under practically constant pressure, so that the temperature of the gases near the
propellant surface, and hence, the rate of burning, will be independent of the mean temperature
throughout the whole vessel. For a given propellant at a given initial temperature therefore,
the rate of burning will be a function of the gas pressure only and will be the same function in
the gun as in the closed vessel. This conclusion has been verified experimentally by

Muraour* who varied the mean gas temperature in a closed vessel by introducing extra
cooling surfaces.

Using the notation of Chapter IV, the reduction of the dimension D of the grain at any

moment is (1 — f) D and the rate of burning is therefore — Ddf dt. This, therefore

, 1s a
function of the pressure and is usually expressed in the form

— Ddf'dt = pp* 5,04
where « and { are constants for a given propellant composition ; 3 is called the rate-of-burning

coefficient and «, the rate-of-burning index or pressure index. We have seen in Chapter III
that, for the high pressures with which we are concerned, « should be nearly unity.

® H. Muraour, Zeit. fur phys. Chem. A., p. 163, 1928,
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Before considering methods of deducing o and § experimentally it will be convenient to
consider some properties of the theoretical pressure-time curve obtained from burning at constant
volume.

5.05. The theoretical pressure-time curve

If z is the fraction of charge weight burnt at time ¢, the volume occupied by the gases at
that time is K — (1 — 2) C/3 where 3 is the density of the solid propellant. The value of
V in equation 5,01 is therefore

[K — (1 — =) C/3]/C=z
and the equation takes the form
FCz =p[K—bC + (1 —2)C (b —1/3)] 5,03
From 4,01,
z=1—/)(1+9) 506

and the differential equation of the pressure-time curve is obtained by eliminating f and =
between 5,04, 5,05 and 5,06. The result can be expressed in the form :—

D dy (1+ny) . A — YT
Bprdt = 1+n [(1_9) 1+ nd ]‘I‘ 507

where p, = FC/(K —56C) and is the final or maximum pressure,

Y = plpa n=C (b—1/3)[(K—5C)

Clearly, Bp,*¢/D is a function of 6, a, n and {. Hence, for the same propellant and shape,
and the same loading density C/K, p is the same function of ¢/D. The effect of varying D,
all other loading conditions being the same, is therefore to alter the time in the same ratio.
In particular, the total time of burning is proportional to D. This result was assumed in

Section 5.03.

Since the loading density C/K is generally low in closed-vessel experiments and (b — 1/8)
is also reasonably small, the quantity 7 is also small. Hence, for the same propellant and shape,
2:*t/D is nearly the same function of p/p, for all loading densities.

Similarly, for propellants having the same index « and the same shape, 3p,%¢/D is nearly
the same function of p/p, for all loading densities.

The slope of the curve is always positive, except when 8 = 1 and ¢ = 1, when it is zero.
A true maximum pressure is therefore realised only with cord ; with all other shapes the
pressure is still rising at the end of combustion and the slope of the pressure-time curve at
this point is (1 4 n) (1 — 0) Bp,'+%/D.

Some typical pressure-time curves are illustrated in Fig. 5.01. These are all for the
same charge weight and pressure index (unity) with different values of 0.
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5.06. Determination of rate-of-burning constants

To determine the constants « and $ in equation 5,04 we require corresponding values
of df/dt and p. The pressure-time record gives us a continuous record of the pressure, but
unfortunately we have no corresponding record of the size of the propellant grain during
burning. A technique has been developed by which the burning can be interrupted at selected
intervals of time, so that the grains can be subsequently measured, but reliable records are not
yet available. We must therefore rely on calculation based on the known properties of the
propellant.

Combining equations 2,15 and 5,05,

FC2T/Ty=p[K—bC + (1 —2) C (b —1/9)] 5,08
and, if the temperature and pressure when z = 1 are T, and p,,
FCT,'T, = p; [K — bC]

Hence
z = (1 = n) p/(p, + np) 5,09
where

P2 = Tp,/T, = FCT/T, (K — bC)

and, as before,
n=C(@®—1/3)/(K—5C)

If, therefore, we know T/T, at each stage, we can calculate = from the observed pressure
at each instant.
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Since z=(1—f)(1+ 6f)
it follows, by differentiating and solving for f, that
—dfldt = [(1 + 0)? — 402]— d=z/dt 5,10

Hence by numerical differentiation of the calculated =z, ¢ relation corresponding values
of df/dt and p can be deduced. Thence « and B can be obtained by plotting on logarithmic
paper and putting the best straight line through the points.

The numerical differentiating process is somewhat inaccurate and a technique has been
developed whereby the pressure is differentiated electrically, yielding a record which gives
dp/dt against p.* 'This may be used to determine df/dt directly.

Differentiating 5,09 yields '

dz  (1+n)p, dp

di = (p7 + np)? at
while 5,10 may be written
a 40 (1 + n) pTH d=
_dt_[(l+e)2_ P, + np dt

Thus, df/dt can be calculated directly from the dp/dt, p record.
We will now consider the problem of determining T/T,,.

5.07. Ignition of the charge in a closed vessel is started by heating a fine fuze wire which
ignites a gas mixture, usually consisting of ethylene, oxygen and air. For picrite propellants
which are difficult to ignite a small amount of fine nitrocellulose powder, which is readily
ignited by the ethylene flame, is used to provide a stronger ignition flame. This flame cools
rapidly, warming the propellant surface as it does so and the propellant then starts to burn.
This delay in ignition of the main charge, of the order of one or two hundredths of a second,
gives time for pressure pulses in the igniter gas to die down and also reduces the difference
in ignition time between different parts of the propellant surface. It is, of course, always assumed
that all parts of the propellant surface start to burn simultaneously.

At the commencement of burning, therefore, the vessel is filled by almost cold gas of
similar composition to the propellant gas, and of mass about 1 per cent. of that of the propellant
charge. If there were no heat losses during burning the mean temperature throughout the
vessel would rise asymptotically toward T, increasing from about 97 T, to ‘99 T, i.e., by
about 2 per cent. in the period from 30 per cent. burnt to 100 per cent. burnt, which is the
period in which we are most interested.

If all the heat loss during burning occurred at a rate proportional to the mass rate of
burning then the effect would be the same as if T, were lowered by a fixed amount. Some
of the heat loss, however, appears to proceed at a nearly constant rate and so to produce a
greater effect in the early stages. The nett effect is therefore to produce a small fall in
temperature which is least when the mass rate of burning is greatest. We should therefore
expect the mean gas temperature to rise slightly during the period from 20 per cent.
burnt to all-burnt for propellants with nearly-constant burning surface, but to reach
a maximum between 70 per cent. and 90 per cent. burnt and then start to fall in the case of
cord propellants.

* See Section 13.09,
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Reliable measurements of the heat transferred to the vessel walls during the combustion
period have never been made, although suitable techniques are now available. Until such
measurements are made the best that can be done is to assume that the rate of heat loss is
proportional to the mass rate of burning, i.e., we can assume a constant mean gas temperature
throughout the burning period, except that we can allow for the cooling effect due to the igniter

as.

s Just before ignition of the charge the igniter gas is at a temperature very little above room
temperature. If its mean molecular specific heat over the range from room temperature to T,
were equal to that of the propellant gas over a range near T, then on mixing the cold igniter
gas with hot propellant gas the increase in pressure due to the former would exactly balance the
decrease in pressure due to the latter. Throughout the burning, therefore, the effect of the
presence of the igniter gas is to increase the total pressure by a constant amount, approximately
equal to the pressure produced by the cold igniter gas alone.

For cord propellants the charge is not quite completely burnt at maximum pressure, but
all-burnt occurs a little later and at a slightly lower pressure. If we assume that the charge
is all burnt at maximum pressure, as we usually do, then the mean gas temperature calculated
for that point is a little less than the true value but a little greater than the value for all-burnt.
It gives us quite a reasonable estimate of the mean temperature throughout the important part
of the burning period, from say 30 per cent. to 90 per cent. burnt. We cannot use the early
part of the pressure-time curve because a rapid rise of temperature is taking place and we cannot
use the part of the curve near maximum since here the shape of the curve is determined by small
differences between the rate of rise of pressure due to continued burning and the rate of fall of
pressure due to cooling.

For constant burning surface propellants much the same limitations hold except that we
can go a little nearer to maximum pressure. The top of the curve always departs from the
expected shape because some sticks of propellant finish burning a very short time before others.

We conclude that if we use only that part of the curve representing from 30 per cent. to

90 per cent. of the charge burnt we can assume T = T, and take p," as the observed maximum
pressure.

5.08. A further correction may be required to allow for the effect of heat losses on the deduced
rate of burning. Heat losses which occur at a rate proportional to the mass rate of burning do
not affect the shape of the pressure time curve and so do not affect measurements of the rate
of burning, but we have also to consider other rates of heat loss. In the case of propellants
with nearly-constant burning surface the end of burning always coincides with maximum
pressure. In consequence the total time of burning, and hence the mean rate of burning,
can be measured without any error being introduced by the heat losses. It therefore follows
that for such propellants the effect of cooling losses, which follow any reasonable law of variation
with time, on the rate of burning constant must be very small indeed and of unknown sign so
that we must neglect it.

In the case of cord propellants all-burnt occurs a short time after the maximum pressure
so that there must be some part of the heat loss proceeding at a rate independent of the mass
rate of burning of the propellant. Measurements after all-burnt show that the pressure falls
almost exponentially with time, i.e., that the rate of heat loss is nearly proportional to the gas
temperature. During the burning, therefore, since the mean gas temperature is almost
stationary, we should expect part of the heat loss to proceed at a constant rate. If this constant
rate is sufficient to reduce the maximum pressure by 1 per cent. then it can be shown that it
will increase the measured rate-of-burning constant by about 0-5 per cent. In closed-
vessel work it is customary to reduce the measured rate of burning by a percentage equal
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to half the percentage increase that is applied to the maximum pressure as indicated
in Section 5.03.

5.09. Hunt-Hinds method of analysis

We have already mentioned the uncertainty of the theoretical value of 8 for some shapes
of grain ; it is therefore desirable to use a shape for which the theoretical value of 6 is
reliable when experimental determinations of rate of burning are undertaken. The most reliable
shape for this purpose is cord, for which 6 = 1.

We have also observed that the index « is generally near unity. We shall see later that a
complete solution of the gun problem can be developed when « = 1. It is therefore desirable
to have a method of analysing the pressure-time curve which yields the best value of B over
a given range of pressures when the index is assumed to be unity. Such a method, which also
avoids numerical differentiation, was developed by Hunt and Hinds.*

The method consists in calculating directly, from the pressure-time curve, the function

=In(l1+f)—In(1—f)—2Bf 5,11
where B =C (b —1/8)/(K— C/3) and f is calculated from the relations,
ff=1—=2 5,12
1 FC
and P =}'D—(I(-—-—_—C/-§j + B 5,13

The former is derived from the form function for cord and the latter, from equation 5,05.

We have, at once,
dy iy 1 B c_{_f_ _ 2FC B
dt z Jdt—  (K—C/§)D

when « = 1.

If, therefore, y is plotted against ¢, we should obtain a straight line, the slope of which is
proportional to 8. In practice B is obtained by putting the best straight line through the
points for a given range of pressures.

Since the method is based on equation 5,05, which is only true when there are no energy
and heat losses, it is necessary to apply corrections for these losses. For this purpose the method,
developed by Crow and Grimshaw, of allowing for losses up to the instant of maximum pressure
has been extended to allow for losses up to any time ¢ during the explosion.

The mean temperature T of the gases at time ¢ is obtained from
Csz (T, —T) = ¢p? S + (T — T\) aSq /1,

which equates the loss of heat up to time ¢ to the energy (in heat units) lost in expanding the
vessel and the heat lost to the vessel. In this equation, s is the mean specific heat of the gases,
S is the area and T; the initial temperature of the internal surface of the vessel, and a and ¢
are constants of the vessel.

The actual equation of state at any moment is 5,08 and eliminating f and 2 between this
equation and 5,04 and 5,12 leads to a relation between pressure and time of the form

?To _ @_T___(.."“‘):I
FT ~ ? D~ T,

® The rate of burning of colloidal propellants. Proc. R. Soc. A. Vol. 138, 1932,
1 Crow and Grimshaw. The equation of state of propellant gases, Phil. Trans. A. Vol. 230 (1932) p. 50.
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where t' is the time at all-burnt and T is the average temperature over the time interval t' — ¢.
Under uncooled conditions,

% . [Fg (zc,[')— :O):l

where p, i1s the uncooled pressure corresponding to p and ¢, — ¢, is the corresponding value
of t' —1.

Hence po=Tp/T
when ty —to =T (t' —1t)/T,

and these give the pressure and corresponding time when there are po losses.
The function y 1s calculated from the corrected pressure and is plotted against the corrected
time.

5.10. Some numerical results

The following table gives some measured values of rates of burning. Corrections for
vessel expansion and cooling have been applied but these propellants were not fired in the
standard vessel and so the results are less accurate. In particular the values of « are not very
accurate but the values of §,, the constant in the equivalent linear law deduced for a maximum
pressure of 22 tons/sq.in. should be quite good.* For values of « within 0-2 of unity a good
approximation for §, is

B =B —B (10« + 9) (1 — «)/8.

Propellant Lot No. 3 o B N
MD 8 W.A.12825 0574 1-:00 1-38 1-38
MD 38 B.1631 ‘0574 93 1-54 1-29
MD 11 W.A.9024 ‘0574 1-02 1-25 1-32
W 057 W.A.C.116 0581 -90 1-49 1-14
SC 048 R.N.C.390 0567 92 1-21 98
NQF 045 Batch 823 -0607 79 1-34 77
NFQ 042 W.A. 12860 <0592 -76 1-14 60
NFQ 042 Batch 808 -0592 -74 1-17 -59
N 022 A.R.D.228 0592 -82 1-02 -63
to 096 A BC&D

disin lb./cu.in. { gives rate of burning in ins./sec. when p is expressed in tons, sq. in.

® These values are taken from H. H. M. Pike, Ballistic data for some British propellants, A.C.2619,1B.122,
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In addition the rates of burning of SC and a semi-solventless NFQ composition have
been measured by an alternative method in which the pressure is kept constant and the time
required to burn through a known thickness is measured.* The results so obtained are free
from errors arising from uncertainties in heat loss or in the equation of state but the method
is too elaborate for routine use. The rates of burning over the range 3 tons/sq.in. to 14 tons/sq.in.
were best fitted by the values

a = 0960

g = 1-070 for SC

and o =0-818 8 = 1-020 for NFQ

The result for NFQ agrees almost exactly with the figures for N given in the last row
of the table. These latter figures are more accurate than any other figures given in the table
since firings were carried out with three different charge weights of four different sizes of
cord, all pressed from the same paste and dried as nearly as possible to the same content of
volatile matter. For SC the more accurate method gives a slightly higher index but a value
-of B, one per cent. lower.

The small difference between the two lots of NFQ is due to the fact that the former contained
no sodium cryolite. The very low values of « observed with those two propellants are not thought
to be real ; these were early samples of picrite propellant and there may have been a relatively
large concentration of the nitroguanidine crystals near the central axes of the cords.

Closed-vessel firings have also been carried out for different initial temperatures of the
propellant over the range from 35°F. to 120°F. in order to find the effect of temperature
variation on the rate of burning. In the following table are given some measured values of

the percentage increase in rate of burning for 10°F. rise in propellant temperature.t

Percentage Percentage
Propellant increase in f3; Temp. range increase in F
per 10° F, °F. per 10° F,
HSC 2:0 35—120 0-13
SC 2-0 do. 0-17
WM 2-2 35— 80 0-15
A 1-9 35—120 0-18
N & NFQ 1-0 (variable) do. 0-22

In all cases these figures are for propellants in cord form.

An addition of 1 per cent. by weight of either water or solvent to a propellant decreases
the rate of burning by about 15 per cent. and the force by about 2 per cent. Since British
propellants of the non-picrite type will absorb about 1 per cent. of moisture in an atmosphere
of 80 to 90 per cent. relative humidity the treatment of the propellant before firing is of
considerable importance. When closed-vessel firings are required in connection with gun
firings an extra round is made up in the magazine and treated in exactly the same way as the

® H. H. M. Pike and H. Green. Development of a new technique for closed-vessel determination of rates of burning
and applications to both solid and liqguid propellants. A.R.E. Report 5/48.

+ H. H. M. Pike. The effect of initial temperature on the ballistic properties of propellants, A.R.D. Ballistics
Report No. 34/44. See also H. A. Flint, A.R.D. Ballistics Report No. 12/45.
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other rounds. At the time of the gun firing this round is broken down and a sample taken
which is immediately placed in an airtight glass bottle, where it is kept until it can be fired
in the closed vessel.

Variation of manufacturing procedure can also have an appreciable effect on £,, presumably
associated with corresponding variation in the structure of the colloid. Thus the temperature
of the incorporations and the composition of the solvent must be standardised and maintained
within prescribed limits. The particle-size of the picrite ingredient is a further factor
influencing B, in picrite propellants. The magnitudes of these effects have however not yet
been precisely evaluated.

Representative values of the rates-of-burning indices and coefficients are given in
Table 5.01 for the propellants in common use. These values are intended for use in routine
calculations, but it must be stressed that they are only representative and that in individual
samples and lots appreciable variations from these values may occur. The table also gives
percentage variations in F and 8, for 10°F. variation in initial (or charge) temperature ; these
also are representative.

5.11. The burning of tubular and multi-tubular shapes

When measurements of the temperature coefficient of rate of burning were first made
it was found that the shape of some propellants had a marked effect both on their rate of burning
and on its variation with temperature. The variation in rate of burning was found to be due
to a very high rate of burning inside the holes of tube or multitube. This phenomenon is
well known in the case of rocket propellants, where it had been found that the rate of burning
is increased if the propellant gases have a high velocity tangential to that surface. An
explanation of the phenomenon was given in Section 3.12.

For sufficiently low velocities the rate of burning is independent of gas flow, but if the gas
velocity exceeds a certain critical value the rate of burning starts to increase. Experiments
on SC and similar propellants at rocket pressures show that the rate of burning can then be
expressed very nearly by a relation of the form

— Ddfjdt = 31 + A (1 — u,)] 5,14

where u is the mean gas velocity tangential to the surface, A is a constant and u, the critical
velocity.* Experiments confirm the expectation mentioned in Section 3.12 that u, increases
and A diminishes for hotter propellants, where the burning zone is thinner. They also
show that A varies very little with variations in initial temperature of the propellant.

In guns, propellants much cooler than SC may be used and since the reaction zone is then
much thicker we should expect u, to be very small and A very large, and probably that we
should have to use a more complicated function of % in place of the simple linear relationship
of equation 5,14. Direct measurements of the laws of erosive burning of gun propellants
have not yet been carried out, but in many cases the erosive rate of burning appears to be very
much greater than for SC as judged by the differences in burning rate between cord and tube
of the same composition.

The erosive burning of tubular (or multi-tubular) propellant increases the apparent burning
surface in the early stages of burning. Since the gas velocity is highest at the ends of the holes
these burn away faster and so the holes become nearly conical in shape at the ends. The gas
velocity then dies down and so the rate of burning falls to little more than the value one would
expect if no erosion occurred. Owing to the coning out of the holes, however, the web is soon

®S. F. Boys and D, M. Clemmow, A determination of the law of erosion for SUK propellant, A.R.D. Ballistics
Report No. 33/45.
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burnt through at the ends of the tube and then the tube shortens in length very rapid.,,
decreasing the burning surface. For tubular propellant therefore, closed-vessel experiments
show that the burning surface is in effect not constant but decreasmg For W/T 109-038,
cut in 5-inch or 10-inch lengths, the rate of mass burning can be approximated fairly well by taking
the same linear rate of burning as for cord propellant and the correct web size but 8 = 0-15
or 0-3 instead of zero. American NH propellant would have a negative value of 6 of the order
of — 0-15 if burning proceeded by parallel layers but in fact the erosive burning is sufficient
to give an effective value of 6 very near zero.

Evidence of recent origin leads to the conclusion that the delayed ignition in the perforations
of tube or multi-tube has an important effect on temperature coefficients. If the delay is
increased by reducing the initial charge temperature, ignition in the perforation is completed
at a later stage of burning, and therefore at a higher pressure, with a consequent increase in
the amount of erosive burning, which effectively reduces the temperature coefficient.

The value of 6 for tube and multitube is generally required in conjunction with the linear
law of burning. It can, however, be deduced from the pressure-time records of closed-vessel
experiments for the more general law of equation 5,04. The values of a and B having been
determined from experiments with cord for a given propellant composition, a series of values

of f can be calculated from the p, ¢ record of a firing with the particular shape by direct
integration, since

_ B ("
=D, pedt
The corresponding values of z are calculated from 5,05 in the form

(14+mn)p
P+ mnp

n = C (b— 1/8)/(K — bC)

2 =

where

From the series of corresponding values of 2 and f the best value of 6 can be determined.

We conclude this Chapter with a short account of Charbonnier’s form function and his
method of deriving the appropriate burning constants from closed-vessel firings.

5.12. Charbonnier’s form function

Charbonnier’s method of treating the burning of propellants is independent of Piobert’s
law of burning by parallel layers. He deals with the rate of change of mass of the solid portion
of the charge and postulates the law

dz/dt = Qp* () 5,15

where Q is a constant, called the vivacity or quickness of the propellant, and ¢(2) is Charbonnier’s
form function. If the propellant does burn in parallel layers, this function is the ratio of the
burning surface at any moment to the original surface area of the propellant. Then, from 4,03,

¢(z) = [1 — 462/(1 + 0)7]}
and therefore, from 5,04 and 5,10,
Q=(1+406)p/D 5,16
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Whatever the mode of burning, it is generally assumed that ¢(2) depends on the shape
alone, whereas Q depends on the composition, shape and size of the propellant. The value
of ¢(2) when z =0 is always chosen as unity.

Values of z are determined, as previously described, from the pressure-time curve,
using equation 5,05 in the form

z = (1+4n) p/(p. + np)

and the approximation is usually made that n is negligible, so that 2 = p/p,.
With this approximation we have

dz/dt = Qp,*2* ¢(=2).

Hence
1 [ dz
Pt —t) = 6 J;J ol lP(z) 517

where ¢, — t, is the time interval between two selected values, z, and z, of z.

If, therefore, we have a series of firings with the same shape and size of the same powder,
but at different loading densities, and the same values of z, and z,; are selected to determine
(t, —t,) from each record, the right-hand side of equation 5,17 remains unchanged, and «
can be deduced from the final pressures and the corresponding time intervals. We have, in
fact,

olog p, + log (¢, —t,) = alogp,” + log (¢, —t,)) = .

and by plotting p, and (f, —¢,) on logarithmic paper, « can be determined.
In Charbonnier’s (and Sugot’s) method of gun calculation numerical values of the function

* dz
Ve = [ 5
=) , 72
are required.

This function can be derived from the p, t curve by constructing the curve p%*, ¢ and
integrating. From 5,15 it is evident that

! B * dz _ V(z)
| a=g L@ - Q

0

If this integral is now plotted against z, the slope of the curve at = = O has the value
1/Q, since dV(z)/dz — 1/7(z) and this is unity at = 0. Thus Q is obtained and therefore
V(z) as a numerical function of z.

In the method of gun calculation referred to, « is assumed to be unity ; the function
V(z) is then obtained at once from the p, t curve by direct integration.

Charbonnier found that for French tubular powders, with « = 1, the form function could
be represented reasonably well by the expression

9(2) = (1 —=2)*?



CHAPTER VI
THE ENERGY EQUATION

6.01. In order to derive the energy equation of internal ballistics we consider the application
of the principle of the conservation of energy to the reactions which occur in the gun. The
source of energy lies in the chemical energy of the propellant. This energy is made available
when the propellant is raised to the appropriate temperature, and is converted into a number
of forms. The two most important forms are the heat energy of the gases and the external
work done on the projectile during expansion. In addition, there are secondary forms such
as the kinetic energy of the gases, the kinetic energy of the recoiling parts of the gun and various
strain energies in the gun, projectile and driving band.

Of these secondary forms, some are small enough to be ignored with confidence, others,
although not negligible, are small enough to be allowed for by approximate methods.
Accordingly we consider in Sections 6.02—6.06 a first approximation to the energy equation,
known as Résal’s equation, involving only the principal energies. In Sections 6.07 et seq., we
consider means of extending this equation in order to allow for the more important of the
secondary energy losses.

6.02. The conservation of energy

If the internal energy of the gases be denoted by U, the external work done on the projectile
by W and the energy supplied by the burning propellant by Q, then we have, neglecting all
secondary energy losses

Q=U+W 6,01

The three quantities must, of course, be measured in the same system of units.
We now replace these symbols by more specific variables.

6.03. The energy released by the propellant

The amount of energy released by the burning propellant may be conveniently calculated
by considering the propellant to be burnt in an enclosed vessel. Suppose that unit mass of
propellant is burnt ; after burning we have unit mass of gas at an absolute temperature T,
(say). This temperature is the adiabatic flame temperature and is a characteristic of the
propellant. It is calculated by methods described in Chapter II. The energy of this gas
is, of course, equal to the chemical energy of the propellant, so that if we can write down an
expression for the heat energy of the gas in the closed vessel we shall be able to derive an
expression for Q.

Let the specific heat at constant volume of the gases at any temperature T be oy heat units
per unit mass (e.g. calories per gram.). Then the amount of energy in the gases in the closed
vessel 1s given by

T,
J. ov dT heat units.
1]

In this expression, the lower limit of integration is conveniently taken as 0° absolute, but any
other fixed lower limit would be equally suitable as it is only changes of energy which will be
considered and not absolute values.

67
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Since this energy is derived from unit mass of propellant, we conclude that if from a total
mass of propellant C a fraction 2 has been burnt at the instant under consideration, then the
energy liberated is given by '

To
Q=~Cz f ov dT heat units,
0

TJ
or, Q=]J]Cz f ov dT mechanical units 6,02

0

where ] is Joule’s Equivalent giving the number of mechanical units in one heat unit.

This equation requires a little more consideration, however. It involves the quantities
T, and o, which depend to some extent on the pressure of the gases evolved from the propellant.
This dependence arises because the equilibria reached by the dissociation products are affected
by pressure. For example, the dissociation of hydrogen molecules into atomic hydrogen is
enhanced at low pressures, and as the dissociation is accompanied by absorption of energy,
it follows that T, will tend to drop at low pressures ; this is most marked for the hotter
propellants where dissociation occurs to a greater extent. Similarly o, depends on the
constitution of the gaseous mixture and must also depend on pressure. A second effect is due
to the fact that the gases are not quite perfect and there is a small decrease in the mean specific
heat, so giving a further slight increase in T, with increasing pressure. However, these two
effects are small over the range of pressures in which we are interested, and it is permissible
to use a fixed value of T, for each propellant. Similarly it will be expected that, for a given
propellant, ov will depend on the temperature only.

We can therefore conclude that equation 6,02 gives an adequate expression for the amount
of energy supplied to the gun, in terms of quantities T’y and oy which can be calculated in the
manner described in Chapter II.

6.04. The internal energy of the gases in the gun

In the gun, owing to expansion and the performance of external work, the gas temperature
is less than that reached in the closed vessel and we shall denote it by T. Consider then the
internal energy of gas at temperature T', and of mass Cz. Wecan evaluate this by considering, as
in Section 6.03, the amount of energy required to heat the gas from absolute zero to temperature
T. Since it is the internal energy we require we shall clearly imagine the gas to be heated
at constant volume since under this condition no external work is done. Hence the required
internal energy of the gas is given by

U= Jsz ovdT 6,03
0

6.05. The external work done in expansion
If we introduce the following notation :(—
A = area of bore including rifling grooves,
x = distance travelled by shot at instant under consideration,
¢ = pressure on base of shot at this instant,
then the external work done may be written

W — AJ. P.tdx 6’04
0
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6.06. Development of Resal’s equation
By inserting into 6,01 the expressions we have found for Q, U and W in 6,02, 6,03, and
6,04 we obtain

chf°a.dT=chf a,dT-{-Af pdx
0 0 0
which may be written

]sz " 0dT = Afp.dx
T 0

Now although o, varies considerably over the temperature range 0 to T, its variation over the
range T to T, is smaller and we can replace ov in the integral by a value ov which is a mean
over the temperature range to be expected in the gun. We thus have

JC23, (T, —T) = Ar pidx

ie., JCz6,T, = JCz0,T + A fk pedx 6,05
0

We now eliminate T from this equation by means of the equation of state (Section 2.12),
p(V—108) =aRT 6,06

In this equation V is the volume occupied by unit mass of gas, & is the co-volume, n the
number of gram-molecules per gram, R the universal gas constant in mechanical units and p the
mean gas pressure. It should be noted that the pressure p is not quite the same as the pressure
ps used in considering the external work done by the gases. There is in fact a pressure gradient
in the gun, the pressure being highest at the breech and lowest at the base of the projectile. This
pressure gradient is a consequence of the acceleration gradient which must clearly exist in the
propellant gases, since the gases at the breech end are stationary while at the base of the projectile,
they have an acceleration equal to that of the shot. The quantity p to be used in equation
6,06 is therefore a mean value suitably averaged over the pressure gradient. The relation
between p and p, is further discussed in Chapter VII. Equations 6,05 and 6,06 now give
Jov

JCa5, Ty = -2 Cap(V —b) + AJ pedx
0

If we use the well known relation 5, — g, = nR/J (Section 2.13)* where G, is the mean specific
heat at constant pressure and write Y = /o, we have

y—1 =nR/JG, 6,07
Substitution for Jo, then gives

nR _ Cxp(V—0>

Cz T ) +AJ pudx 6,08
L]

y—1°° y—I1

* The factor 1/] is necessary to convert R from mechanical to heat units.
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Introducing the “ force constant ” of the propellant (Section 2.11) defined by

F = »nRT, 6,09
we have

FCz _pCa(V—b) , [
= e | pax 6,10

Since V is the volume occupied by unit mass of gas, CzV is the total volume occupied by
the gas at the instant considered. This includes the volume of the chamber K, plus the volume
of the bore behind the driving band and less the volume occupied by the propellant still remaining
solid. Hence if § is the density of the solid propellant,

5V = K, + Ax — C (1 — 2)/5,
and 6,10 becomes

FCz
y—1

_ P )
— Y_II:KU+Ax—C13—Cz(b—1/S)] +Afop,dx

In this equation K, — C/3 will be recognised as the initial free space behind the shot before
firing. If we write

K, — C/3 = Al 6,11

l is the effective length of the free space in the chamber and we obtain Résal’s equation
in the form

FCz
y—1

=T_’i_1[A(x+l)—Cz(b~—1/8)]+AJ.xp;dx 6,12

6.07. Secondary energy losses
There now remain to be considered a number of secondary losses some of which will
necessitate modifications to Résal’s equation and others which we shall find negligible. The
following are the energy losses to be considered—
(a) kinetic energy of propellant gas and unburnt propellant (E,),
(b) kinetic energy of recoiling parts of gun and carriage (E;),
(c) heat energy lost to the gun (Ex),
(d) strain energy of the gun (E,),
() energy lost in engraving the driving band and in overcoming friction up the bore
(E/),
(f) rotational energy of the projectile (E,).
Our object will be to give a quantitative estimate of the magmtude of these losses. In
order to do so we shall quote formulae obtained or referred to in later chapters where a more
detailed account of the theoretical and experimental investigations will be found.

6.08. Kinetic energy of propellant gas and unburnt propellant (E,)

A detailed description of the motion of the propellant gas in the gun has been attempted
by many ballisticians. The difficulties of the subject are, however, considerable and it is not
possible to treat the problem adequately in a single section. A more complete discussion is
given in Chapter VII and we shall here anticipate the results of that chapter.
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It is there shown that the kinetic energy of the propellant gas and unburnt charge is given
by
E, = § Cov?g ft. lbs. 6,13

where C is in Ibs. and v is the velocity of the projectile in ft./sec.

6.09. Kinetic energy of recoil (E,)

We shall find that the energy of recoil is very small and approximate methods may be
used in deducing an expression for it. If W, w are respectively the masses of recoiling parts
and shot, the conservation of momentum gives, if we neglect the mass of gas,

u = wo/W
where u is the velocity of recoil.
Hence the energy of recoil is given by
w we?
J — — —
Eg =4 Wu ~W 2 ft. Ibs. 6,14

The recoil energy is thus w/W times the energy of the shot. W is of the order of 100 w, i.e.,
this source of energy loss is of the order of one per cent.

6.10. Heat energy lost to the gun (E,)

The derivation of the heat transfer equations and their solution are more completely
discussed in Appendix II. We shall here quote a semi-empirical formula, proposed by
C. K. Thornhill, which gives the amount of heat lost to the gun as proportional to the square of
the shot veloc:ty, i.e., proportional to the shot energy ; it is

0-38d' > (x; +x) (Ty— Ty 2

Ep = 1 + 0-6 47 175/C0-8375

ft 1bs. 6,15

where T, is the adiabatic flame temperature, T; is the initial temperature of the gun (both in
°C.), C is the charge weight in lbs., d is the calibre of the gun in inches, x; is the shot travel
to the muzzle in inches, x, is an equivalent chamber length, defined as x, = K,/A inches,
v is the velocity of the shot at any instant and v; is the muzzle velocity, both in ft./sec. For
present purposes (see Section 6.14), it is convenient to take Ex proportional to the shot- -energy,
which is a fairly good approximation and so formula 6,15 is quoted. A better approx1mat10n,
also proposed by Thornhill, is to use the value at the muzzle as given by 6,15, in
conjunction with the approximations that, for shot-travels greater than some 20 cahbres, Ex
is nearly proportional to (x 4 x,), and, for shot-travels less than some 20 calibres, Ex is nearly
proportional to x, x being the shot-travel at any instant.

6.11. Strain energy of the gun (E,)

It can be shown* that the application of a pressure p inside a closed cylinder whose
internal and external diameters are respectively d, and d, results in an increase in volume of
amount gp per unit initial volume where

3 d;? 1 d;?

P=3+2u d2—d2 7 4 dF—ad?

* A.E. H. Love. Mathematical Theory of Elasticity. Cambridge University Press, 3rd Edition. 1920, p. 143
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In this expression the elastic constants A, p are related to Young’s modulus E and Poisson’s
ratio o of the material of the cylinder by

o oE E
il G = B =50 F0)

The total work done in the expansion of the gun will therefore be }pp? per unit initial volume
and hence, since the volume at any instant is K, + Ax, we have

E, = Lo (Ko+ Ax) p? ft.lbs. 6,16

where p is given in lbs. per sq. in., (K, + Ax) in cu.ins. and E in lbs. per sq.in. Calculations
in typical cases show that E; is usually less than one per cent. of the energy of the shot.

6.12. The energy lost in engraving the driving band and in overcoming friction
along the bore (E/)

The amount of work required to engrave the driving band is not easy to calculate. A
rough empirical value of the pressure developed in the chamber before the shot begins to
accelerate freely has been given by Sugot as 400 kg./cm.? or 2-5 tons/sq. in., but the actual
value must vary for different equipments.

After the band is fully engraved the frictional resistance probably drops to a small value
but precise experimental results are not at present available. Such results as are available
are discussed in Chapter XVI.

The work done against friction is unlikely to exceed about 4 or 5 per cent. of the kinetic
energy of the shot. In what follows we shall take

E;, = 0-04 x } wo?/g ft.lbs. 6,17

the great advantage being that we preserve the form of the energy equation by so doing. This
relation for E; implies a resistive pressure proportional to the gas pressure and thus gives a
resistance too small at the beginning and end of shot travel, but serious errors are not, we
believe, introduced by this procedure.

6.13. The energy of rotation of the projectile (E,)
Due to its rotation by the rifling, the shot possesses rotational as well as translational
energy. If we suppose that the shot rotates once while it is moving forward a distance of

n calibres, its angular velocity will be 2nv/nd where v is its forward velocity. Hence if & be the
radius of gyration

2 2
E — (ZF)" % £ lbs. 6,18
nd 2g

For most shell (2k/d)? lies between 0-5 and 0'6 and a representative value of n is 30. Thus

the rotational energy is about 0-6 per cent. of the translational energy of the shot and may well
be neglected.

6.14. The modified form of Résal’s equation
As already pointed out, equation 6,12 requires modification for secondary forms of energy.

This entails replacing the term A| p.dx of equation 6,12 by
Yo

Jwo? + Ep 4 Eg + En+ B + B + E
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Using the results of Sections 6.08—6.13 we see that we can neglect E, and E, as being very small
in comparison with the first term and that the expression to replace A J’ psdx becomes*
0
1-05 X 3 wv? + 3 Co? + Ei

If therefore we write
wy = 1-05 w + %C, 6119

we shall have, as the modified form of equation 6,12

FCz
y—1 y

2 [Aw+D—csb—1] + uor + Es 6,20

so that the form of 6,12 has been preserved except for the term E,.
The form can be completely preserved by writing formula 6,15 in the form

Er = } w, 2 kg ft.lbs. 6,21
where w, is in lbs., v in ft./sec. and

076 d*3 (x; + x,) (T —T,) g

k= w, (1 + 0-6 d2'175/C0-8375) 7’32 6’22

a rough estimate of the value of v; sufficing for the evaluation of k. If now we insert this
value of E; in 6,20 and write

Y —1=(—1)( + k) 6,23
we have
FC=z

Y—1" v

L [A (+ 1) — Ca (b— 1/3)] + bw, o 6,24

where w, is given by 6,19 and y’ by 6,23 and 6,22.

*® This includes an energy loss of one per cent. to allow for recoil (Section 6.09) and four per cent. to allow for
friction (Section 6.12).



CHAPTER VII
THE EQUATION OF MOTION OF THE PROJECTILE

7.01. It was seen in Chapter VI that the loss of energy due to recoil and mechanical friction
can be represented by an increase in the mass of the projectile of about 5 per cent. The
equation of motion of the projectile is therefore

Ap, = W do/dt 7,01

where W = 1-05 w and p; is the pressure on the base of the shot. In Section 6.06 it was
noted that p, differs from the mean pressure of the gases on which Résal’s equation is based.
In this chapter, the relation between these two pressures will be discussed in more detail, and
the kinetic energy term in that equation will be determined.

There is, in general, a progressive fall in the gas pressure at any time, from the breech
to the base of the projectile, and this pressure gradient is due mainly to two causes, namely,
the inertia of the propellant gases, and the gas-frictional forces at the bore surface. The
corresponding effects, which, in general, are not large, will be treated as if they were independent,
and will be referred to as the inertia and the friction pressure-gradients respectively. Since,
at most, the non-uniformity of the gas pressure along the barrel can only be introduced into
the main ballistic equations as a correcting term, the free use of simplifying assumptions is
justified in the determination of these pressure variations.

7.02. The inertia pressure-gradient*

Let V be the volume at any moment between the breech and shot-base and consider a
cross section moving with the gases such that the volume behind it is ¢V, ¢ being a fraction.
As a first approximation we shall assume that the volume behind this section always bears the
same ratio to V, so that ¢ is independent of the time, . We shall also assume that the
volume of the solid portion of the charge is negligible compared with V ; this is obviously
true except in the early stages of burning.

Let the density at the section be p, a function of ¢ and . The mass of an element of
volume Vdo at the section is therefore pVds and

1
f pVds = Cz 7,02

0

where z is the gaseous fraction of the charge weight C.
If v is the velocity of the projectile, the velocity of the section is clearly ov and the
momentum of the elementary volume Vdes is pVvedos.

If p is the pressure at the section, the impressed force is — A (dp/d0)do.
Hence

d(pVe)  ,0p
¢ —— =— AL 7,03

* This problem was originally considered by Lagrange and is known as the Lagrange Ballistic Problem. The
approximation with regard to ¢ was made by him.
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In deducing this equation we have assumed that the motion of the solid portion of the
charge is negligible. Corner and Pack* have shown theoretically that this is approximately
true, except in the last stages of burning when the acceleration may be appreciable ; their
deductions have received reasonable experimental confirmation.t

Integrating 7,03 from the section to the base of the projectile,

! Vo
Ap—p)= [ 0

g

and, using 7,01,

1 ¥
p—ps :f b(PVt)id 7.04

p: w W%

The quantity (p — p.)/ps is generally a small fraction ; the variation of p with ¢ may
therefore be neglected as a second-order effect in this equation. We therefore put gV = Cz
and obtain, by integrating,

p—ps _ (1—0)C d (s)

> W 7o 7,05
If ps is the pressure on the breech (for which ¢ = 0)
p—p:=(1—0) (s —p) 7,06
With this pressure distribution the space-mean of pressure, pm, is
1 .
pm = Jo pdo = § (2ps + ps) 7,07

The quadratic distribution of pressure given by 7,06 is the best simple approximation
known for the form of the pressure gradient due to the inertia of the gases, and it leads to the

simple value 7,07 for the mean pressure, in terms of the pressures at the breech and the base
of the shot.

7.03. A difficulty arises at the moment when the solid portion of the charge is completely
burnt.

It was shown in Chapter IV that

z=(1—/)(1+9)
and it is proved in Chapter VIII (¢f. equation 8,15) that

v =K (fo—f)

where K is a constant depending on the loading conditions and f, is the value of f when
the shot starts to move. For our present purpose we can take f, = 1 with negligible error.
* J. Corner and D. C. Pack.  The motion of cordite in a gun.  A.R.D. Theoretical Research Report No. 27/45.

1 J. B. Goode and N. Lockett. The space and time variation of pressure in the bore of a gun. Experiments
in a B.L. 6-inch gun. A.R.D. Ballistics Report No. 31/44,
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We then have
d (v)/dv = (1 —f) (2— 6 + 30f)

which has the value (2 — 6) at all-burnt.
But, after all-burnt, 2 = 1, so that

d (2v)/dv = 1.

It would, therefore, appear that the pressure ratio p/p, suddenly drops in value, for all
shapes except cord, at all-burnt.

This discontinuity seems to be inevitable if the solid portion of the charge never moves.
It has, however, never been detected experimentally ; this is probably due to the appreciable
acceleration (referred to in Section 7.02) of the salid portion in the later stages of burning and
may be explained as follows :—

If the mean velocity of the solid portion is # its momentum is Cu(l —2). The
corresponding contribution to the pressure difference between breech and shot-base is

Cdu(l—=z) pCdu(l—2) pC du dz
A @& W d [(‘ z)d—“‘%]

using 7,01.

Now, du/dv is the ratio of the accelerations of the solid portion and the projectile respectively.
This ratio is small except in the last stages of burning ; then (1—z2) is small. The first term
in the bracket can, therefore, always be neglected. The total pressure difference between
breech and shot-face is therefore given by

pp—p _ Cld(zv) % dz

dz
=5W z+(v—2u)d—v

Thus the discontinuity does not occur if u increases steadily to the value 4v at all-burnt.

We may, therefore, conclude that 7,05 gives the inertia pressure-gradient at all times
except during the period approaching all-burnt ; during this period the coefficient d(zv)/dv
undergoes a gradual transition towards the value unity at all-burnt.

7.04. The friction pressure-gradient

The velocity of the gas stream is not constant over a cross-section of the bore, as has been
tacitly assumed in the last sections, but near the bore surface there is a turbulent boundary
layer, across which the gas velocity decreases to zero at the bore surface. The theory of the
boundary layer in the gas flow in a gun-barrel has been developed by Hicks and Thornhill*
taking some account both of the non-steadiness and non-uniformity of the flow.

On the assumption that the bore surface is smooth in the hydrodynamical sense, the
skin-friction =, (o, t) i1s obtained as

-0 = p6Z v2/at 1,2

where a and n are constants and 7, is a non-dimensional parameter given by

ni+3n = K (1) Rla®

® E. P. Hicks and C. K. Thornhill. The heating of a gun barrel by the propellant gases. A.C.3118, 1.B.146,
reproduced as Appendix II p. 271.
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R is the Reynold’s number, po%V/Ay, of the main gas flow, in which p is the viscosity of
the propellant gases ; K (¢) is another non-dimensional parameter, dependent on the time ¢,
which is zero at the commencement of motion of the shot, and rises rapidly to an asymptotic
value of order 4 or 5.

The pressure decline due to gas friction at the bore surface is then given by

1

A(p—p)=[ < Sdo

[+

where S is the surface area of that part of the bore behind the shot.
This may be evaluated as

P —ps=[po—pJ [1 — o+ 7,08
where
(1 + 3) Spmp? [ Ap ]znnw
P—0="Gr 15 A |pmoVvaK(Q) 7.09

and pm is the space-mean density of the gases.

Calculations of this pressure-drop have been made by Hicks and Thornhill* for several
theoretical internal-ballistic solutions corresponding to different guns. They show that
the pressure-drop due to gas friction is small compared with the inertia pressure-drop, except
when the shot has nearly reached the muzzle. This enables extensive simplifications to be
made in the expression 7,09 ; for, when the shot is near the muzzle, K(z) may be taken
as constant and p» may be replaced by C/V. The expression then reduces to

Py — ps = ky (Co?/d?) (pd?/Cop)>'+3)

where &, is a non-dimensional constant and d is the bore diameter. The viscosity p will
not vary much between different propellants and the appropriate value of the index n for
flow in gun barrels being 11-3, the power 2/(n + 3) is only about one-seventh. Thus, for
conventional guns at least, the non-dimensional quantity (ud?/Cv)*®+3 will not vary very
much, and may be replaced by a mean constant value k,.
Then, approximately,
po —ps = kCv?/d? 7,10

where k = k, k, is again a non-dimensional constant.
Comparison between these expressions and detailed calculations of the expression 7,09
shows that good agreement is obtained in all cases with

ky p2ln+3) = k) u01* = 9:53 x 10-*in c.g.s. units.

= 6-53 x 10-3in ft. Ib. sec. units.

or, more simply,
k=1-10 x 10-3

The simplified expression 7,10 is therefore quite adequate for estimating the theoretical
pressure difference due to gas-frictional forces. In practice, the constant & may have a higher
numerical value, since the bore surface will not be hydrodynamically smooth, as has been
assumed, at the high Reynold’s numbers, 10° to 10° of gas flow in gun-barrels.

1t E. P. Hicks and C. K. Thornhill. The pregure gradient along a gun-barrel. A.R.E. Report No. 2/49.
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7.05. The total pressure-gradient

A comparison between the pressure differences between breech and shot-base due to
inertia and frictional effects can now be made. For, when the projectile is near the muzzle,
7,10 gives approximately,

[ p» — ps] friction = kCv?/d?,
and 7,05 gives ‘
[ps— pi] inertia = } p.C/W.

[po — p:] friction 2 kWo?

[ps — ps] inertia ~— d° p,
This ratio clearly increases steadily as the shot travels towards the muzzle ; it reaches a value
of about one-third at the muzzle in a typical case, for which W/d* = 0-51b./c.in., v = 3000 ft./sec.
and p; =5 tons/sq.in. The muzzle value of this fraction would, of course, be higher in a
long gun designed to give a high muzzle velocity.

Combining the results given in 7,05 and 7,10 we obtain, for the total difference,
Py — ps = ps [ A+ 2k Wo?/d*p] C/2W 11

where A = (1—f)(36f +2—0),for1> f> 0

and A = 1 after all-burnt, with an appropriate transition region.

Thus
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The experimental measurements made by Goode and Lockett, which are thought to be
the best at present available, do not enable a reliable practical value of % to be deduced
for comparison with the theoretical value, but they do indicate that the theoretical value is of
the right order of magnitude. Figure 7.01 show the comparison between Goode and Lockett’s
experimental measurements of p,/p» and the curve for p,/py against shot-travel, derived for
their cases by the methods so far outlined in this chapter.
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7.06. The mean pressure and the equation of motion

Since, as has been shown, the frictional pressure-drop is small compared with the inertia
pressure-drop for most of the period of shot travel, the space distribution of the frictional
pressure-drop (7,08) may be taken, for convenience, as similar to the quadratic distribution
of the inertia pressure-drop. Then equation 7,06 holds for the combined effects.

Equation 7,11 may be written

pe—ps = p: F(2) C/2W 7,12
where F(?) is a function of ¢ given by

d (zv) & 2k Wo?

FO ==+ =,

to near all-burnt, and undergoing a gradual transition to
F(t) = 1 + 2kWov ?/d*p,

at all-burnt and after.
Then 7,06 becomes

p = p:[1 + 31 —a?) F(r) C/W] 7,13
and the space-mean of pressure at any time is

1
pm= | pdo = pl1 + §F() CIW] = 42ps + 51
0
The equation of motion 7,01 may then be written

Apm = w,dv/dt 7,14
where the modified shot mass w, is given by

w, = 1-05 w + 3CF(¢) 7,15
7.07. The kinetic energy term in Resal’s equation

The kinetic energy of an element of the gases is § pVo? v2 do ; hence the kinetic energy
of the gases at any moment is

1
f 3 pVe? vl ds
0

As in Section 7.02 the variation of ¢ with ¢ may be neglected as a second-order effect
and pV may be replaced by Cz. The integral then becomes }Czv? and, combining this with
the kinetic energy of the shot and the work done on recoil and against mechanical friction,
we have, for the kinetic energy term in Résal’s equation, } w,o?

where w, = 105w + iCz 7,16
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It should be noted, however, that Lagrange’s approximation will not give so good a value
for the kinetic energy of the gases as it does for their momentum, since it takes no account
of radial motion and turbulence. The true kinetic energy term may therefore be slightly
greater and w, may exceed the above value by a small amount.

It will be seen in the next chapter that if w, and w, can be assumed to be constant and
equal, the solution of the ballistic equations is facilitated. Since in each case the varying
term is in the nature of a correction this may be done without serious loss of accuracy. The
function F(¢) increases with time from zero to something greater than unity, while 2 increases
from zero to unity at all-burnt and thereafter remains at that value ; moreover, the true w,
may be somewhat greater than the value given in 7,16.

We approximate by assuming a mean value, unity, for both these functions and so obtain

w, =w, = 105w + 4C 7,17

This is the result foreshadowed in Section 6.14.
With this approximation the relations between the pressures become

Pb Pm P
T+3CW T13CW T1+31(_—o)Cw P 7,18

If it is assumed that the solid portion of the charge is always evenly distributed between
the breech and the base of the shot during the burning, so that the mean density of solid and
gaseous charge is p = C/V and fluid friction is neglected,

p—p=4%p(1—0)C/W
pm = p: (1 + ¥C/W)

and the kinetic energy of the charge is } Co2.
Then

w, =w, = 100w+ }C

It was with these assumptions that this result was formerly derived.

Throughout this chapter, it has always been assumed that the ratio C/W is not greater
than that for conventional guns. Various writers® have agreed that, considering inertia effects
only, and neglecting the effect of the unburnt portion of the charge, a constant value of the
ratio ps/ps 1s deduced which is not significantly different from (1 4+ 4 C/W) for values of
C/W up to unity, even when second and third order terms in C/W are taken into account.
It seems probable therefore that the results outlined in this chapter may be applied for values
of C/W up to unity at least, without very serious error.

7.08. Pressure waves

The preceding paragraphs have dealt with changes of pressure which are continuous from
one region of the gas to another ; another type of pressure variation must also be considered.
When any sudden change in pressure arises in the gas from any cause, a pressure wave will
travel outwards from the centre of the disturbance with the velocity of sound in the gas ; at

® R. H. Kent. Some special solutions for the motion of the potwder gas. Physics, Vol. 7, No. 9, 1936, p. 319.
W. A. Hepner. Solutions for the motion of the powder gas in a cylindrical gas-tube. A.R.D. Ballistics Report
40/43, AC, 4297, 1B.192.
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the temperatures existing in the gases, this is some 3,000 to 4,000 ft.sec., and is considerably
higher than the velocity of the projectile : in the absence of any influence to increase the
amplitude of this pressure wave, it will be attenuated, but may be reflected several times at the
breech end of the chamber and at the base of the projectile.

This problem was considered by Lagrange* and an example of this type of wave was
worked out in a simplified case by Love and Pidduck ;t+ they assumed with Lagrange that
the propellant is all-burnt before the projectile starts to move and the start of the forward
movement of the projectile then causes a local drop of pressure which is initially transmitted
rearward ; this rarefaction wave is reflected several times at the two ends of the gas column :
it follows that the fractional pressure-drop oscillates, and the maximum value which they
deduce is 1 + C/w. Such waves have not been detected in experimental firings.

On the other hand, if a wave of excess pressure passes over a section of unburnt propellant,
the rate of burning will be increased locally, leading to a locally-increased quantity of gas
and thus a further excess of pressure. Thus the presence of unburnt propellant provides
the mechanism for reinforcing any waves of excess pressure which may exist, or in fact which
may be set up by any local focus of excess pressure. Such foci of excess pressure can in fact
be set up whenever the ignition system causes the main propellant charge to begin to burn at
one or more local centres rather than simultaneously throughout the charge ; pressure waves
from this cause have been frequently observed, and have on occasion reached catastrophic
proportions : however, the measurement of pressure-time curves in gun chambers is a routine
method of determining, by the absence of pressure peaks, the adequacy of the ignition system.

®* JL.agrange. Collected Works. Vol. 7.
4+ A. E. H. Love and F. B, Pidduck. The Lagrange ballistic problem. Phil. Trans. A. Vol. 22, 1921-2, p. 167.



CHAPTER VIII
SOLUTION FOR LINEAR RATE OF BURNING
THE HUNT-HINDS SYSTEM OF INTERNAL BALLISTICS

8.01. 'The system of Internal Ballistics described in this chapter was first given in a course of
lectures at the Military College of Science in 1929 ; it has, since then, been amplified by
Professor C. J. Tranter and Mr. M. M. Nicolson and is still in use at the College. Some
suggestions made by Mr. A. W. Goldie have been incorporated in the text.

The main objects of the solution are to obtain, for a given set of loading conditions,

(a) The pressure-space curve,
(b) The maximum pressure,
(c) The muzzle velocity.

The pressure-space curve, which is mainly used by the gun-maker in designing the gun,
is not usually required very accurately, since factors of safety are applied in the course of the
calculation of gun stresses. 'The maximum pressure and muzzle velocity are generally required
to a greater degree of accuracy.

The system is based on equations 6,20, 7,14, 4,01 and 5,04 (with « = 1), which are here

summarised ;—

FCa=p{A(x+1)—Cz(b—1/3)}+ (v — 1) w, v? 8,01
w, dvjdx = Ap 8,02
z=(1—f) (1 + 6f) 8,03
Ddf/dt = — Bp 8,04

The term Ej of 6,20 is omitted from equation 8,01, but the value of y is not adjusted therefor.
Compensation for heat losses need only be made in the solution for muzzle velocity and this
is effected (as will be seen later) by means of an empirical correction to the thermodynamic
efficiency. Other losses are allowed for by adjusting the * equivalent mass moved,” w,, as
indicated in equation 7,17. The form co-efficient 6 is assumed to be constant and the rate
of burning is assumed to be proportional to the pressure.

The quantity (5—1/3) is small and is neglected in many systems of internal ballistics.
The equations can, however, be solved without restricting the value of this quantity and the
complete solution is given in Sections 8.02 to 8.09. In subsequent sections approximations
are introduced to facilitate numerical calculation ; for the calculation of the pressure-space
curve this quantity is neglected ; for the calculation of maximum pressure and muzzle velocity
it is treated as a small quantity. A method of calculating the pressure-space curve to this
order of accuracy is also given, as this is occasionally required in ballistic calculations.

8.02. Reduction of the equations

It is proposed eventually to produce a solution which may be tabulated ; for this purpose
it is essential to deal in quantities which are freed as far as possible from numerical constants
representing the loading conditions ; moreover, difficulty in dealing with various systems of
units will be reduced if the quantities handled are dimensionless.

82
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The following substitutions are therefore made :—

E=1+ 8,05
n = vAD/FCp 8,06
§ = pAl[FC 8,07

M = A?2D?/FCp4w, 8,08

so that effectively, &, n and { are dimensionless variables representing shot travel, shot velocity
and gas pressure.

The equations for solution then become

z2=CE—B2)+3i(y—1) "M 8,09

where B = (b— 1/3) C/Al 8,10
MG = n dn/dg 8,11

z=(1—f) (1 + 6f) 8,12

¢ = — ndf/dE 8,13

8.03. Initial conditions

The shot does not start to move immediately after the ignition of the charge ; initially
the charge burns under closed-vessel conditions and the pressure rises until it is sufficient to
cause the driving band to be engraved by the rifling. The velocity of the shot and the increase
in chamber capacity during the engraving are negligible.

Using suffix , to indicate the values of the variables at ** shot-start,” £, =1 and 9, =0 ;
equation 8,09 then gives

%o = §o (1 — Bzy)
or 2z = Lo/(1 + BZ,) 8,14
where {, = p,Al/FC and p, is the ‘‘ shot-start *’ pressure.

8.04. The solution of the equations

While the charge is burning after shot start, i.e., while 2, < z < 1, the variables are &,
7, § = and f and elimination of any three from the equations 8,09 to 8,13 will result in a
differential equation in the remaining two. It is found to be most convenient to obtain the
equation relating £ and v and to use 7 (i.e., effectively the shot velocity) as the independent
variable.

8.05. Solution during the burning of the charge
Equations 8,11 and 8,13 give
dn = — Mdf
Hence n=M(fo—/f)
or f=fo—2/M 8,15
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Hence, from equation 8,12,

3 =20+ (1— 8+ 2 6f) 7/M — 692/
Eliminating { between 8,09 and 8,11 gives

(8 — B2) ndn/df =Mz —} (y —1) »?

which can be written®

nd __ dE
(@—m)(¢+7) N(E—B3)
where ' N = M/6’
0 =0+3(y— 1M
ab = MNz,
a—b=N (1 — 0 + 26f,)
Since 2 = (1—f) (1 + 6fy)
1— 0 + 26, =¢/{(1 4 0)2 — 46z}
Hence a—b = Ny/{(1 + 6)2— 46z, }
and a + b = +/{(a— b)? + 4ab}

= NyV/{(1 + ) + 2 (y — 1) Ma,}

Equations 8,23 and 8,24 determine a and 4 in terms of the loading conditions.

Equation 8,16 may now be written
z =z, + (@ — b) n/MN — 69?/M?

It will be convenient to write
v,

' ndy _
fﬁw—m®+nYJ%H

so that
a

a4 b

b
logH = — log (1 — n/a) — Py log (1 + 7/b)
Then equation 8,18 becomes

aH = df
"H ~ N(E—Bs3)

8,16

8,17

8,18

8,19

8,20

8,21

8,22

8,23

8,24

8,25

8,26

8,27

® No confusion need arise between the b introduced here and the co-volume & used previously.
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or ﬁ NE  NBz
dH~ H -~ H
whence EH™ —1 = —Bqc,
or £ =(1—Bc) BY
H
where c = NJ‘ H—'24H,
1

the initial values of § and H being unity.

8,28

8,29

Since H and z are functions of 7 (equations 8,27 and 8,25) we have now obtained £ as a

function of 7.

The gas pressure can be deduced from equations 8,11 and 8,18 ;

C__(a-—1'1)(b+=rz)
= MN (¢ — Bz)

8,30

From equations 6,06, 6,09, 6,10, 6,12, 8,05, 8,07 and 8,10 the mean temperature of the

gases at any instant can be deduced in the form
T = T,¢ (£ — B2)/z
and, using 8,09,
T =T, [1 — } (v - 1) 7¥/Ms]
8.06. Alternative expressions for £ and {
If £’ is the value of &, for the same value of v, when B = 0,

Er — HN

and equations 8,28 and 8,29 may be written,

£E=E(1—Bc)
1
c= zd(1/8")
J‘”Ef

Then £ — Bz =E'(1— B¢)
where ¢ =c+ =g
If ¢’ is the value of &, for the same value of v, when B =0,
¢ = (a—m) (b +4- 0)/MNg'

and equation 8,30 mav be written,

S = T'/(1—Bc)

8,31
8,32

8,33

8,34

8,35

8,36
8,37

8,38

8,39
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The coefficients ¢ and ¢’ may be conveniently evaluated as follows : —
Putting B = 0 in equation 8,17,

Mz =§ndn/de’ +} (y—1) 7?

Hence
Mzd(1/8') = —n dn/E' + 3 (y — 1) 5%d(1/E)
= —yndn/&' + } (v —1)[n*d(1/E") + 2 ndn/E’]
1 7
and Me=M [ sdg)=v [ (E)dn—d—DuE 840
g 0

Putting B = 0 in equation 8,09,
MzfE' = MT' + § (y — 1) 7"/&’

Hence

|
Me' =M (¢ + 3f8) = MU + jo (n/E’) d 8,41

The integral in these expressions for ¢ and ¢’ cannot be evaluated in algebraic terms
except for particular values of z, notably for z, = 0; its evaluation by quadrature in any
particular case presents no difficulty.

Alternative expressions for ¢ and ¢’ may be obtained by integrating by parts in equation
8,35. The results are

c=2z,— 38 + Jﬂ (1/&") d= 8,35a

¢ =2z, + f (1/8") dz 8,37a

It is interesting to note that if £’ and {’ are defined by the expressions :—

. ndn B s (fo—Jf) df
Ing = 0Mz_%(Y__l)nz_MJ‘fz—%(Y—l)M(fn_f)z

C=[E—3(—Dn*MJE =[z—3(y— 1M, — )]

which are derived from 8,17, 8,15 and 8,09, equations 8,34 and 8,39 give the solution for the
general form function 2 = ¢ (f).

8.07. ¢ All-burnt”

Denoting by suffix , the values of the variables at the instant when the charge is
completely consumed, we have f, =0 ;

hence, from equation 8,15

7, = Mf, 8,42
whence, using 8,22,

n2=M{0—1+ (a—b)N}/20 8,43
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When 6 = 0 we have, from 8,16,
=M (1 —z) 8,44

The values of £, and {, can be determined from 8,34 and 8,39.
If the value of &, so deduced is greater than the value of £ at the muzzle, the charge will

not be completely consumed in the bore.
Values of 0,/M are given in Table 8.04.

8.08. Solution when 6' =0
The solution becomes indeterminate in one particular case, namely, when 6 =—4 (y—1) M;
then 6’ = 0 and N becomes infinite. Equation 8,17 then becomes

ndy  dE
n+ Mnz, a(£— Bz2)

where

1/n = 1— 6 4 20f, = 1/{ (1 + 0)2 — 46z,
£ =E (1 —Bc)

The solution is

where
E' = emM (l -l' n;fM”zo)_Nl"z'a
and

€= f;!g, z d(1/5')

We then have

n + Mnz,
- Mn (E— Bz2)
All-burnt occurs when

n, = Mfo = M (8 — 1 + 1/n)/28

In the following sections we shall refer to this case only when the results obtained are
affected thereby ; where no reference is made the results may be considered to include this case.

8.09. After “ All-burnt”

During the subsequent motion it will be more convenient to use £ as independent variable.
The form function z is now constant, its value being unity.
Equation 8,09 now becomes

= C(E—B)+ (y—1) 1M
Differentiating and using 8,11 leads to
(€ — B) d¢ + y%dE =0
which integrates to
c (F: I B)Y = Cz (Ez - B)Y =0 8,45

where @ is a constant depending on the loading conditions.
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Hence
7t = {1— ¥ (E—B)} 2M/(y — 1)
={1—®E—B)"}2M/(y—1) 8,46

Equations 8,45 and 8,46 thus give the pressure and velocity for any value of £ greater than ,.
The mean temperature of the gases at any instant is obtained by putting z =1 in

equation 8,31 ;
T = T,% (¢ — B)
Using suffix ; to denote values at the muzzle, the thermodynamic efficiency of the gun is

E=1—T)/Ty=1—®,—B)"Y 8,47
Whence, using 8,06 and 8,08,
v,2 = 2 FCE/(y — 1) w, 8,48

This completes the solution when no restriction is placed on the value of (b — 1/3).

8.10. The pressure-space curve

. When a high order of accuracy is not required in the calculation of the pressure-space
curve we can neglect the small quantity (b — 1/3) altogether and write B = 0.
Equation 8,14 then becomes

% =G

and equations 8,33 and 8,38 may be used for the calculation of £ and {. Retaining the notation
£’ and U’ to denote values when B = 0,

Er — H¥ 8,33
= (a—) (b + =)/MNZ’ 8,38

After all-burnt equation 8,45 may be used in the modified form
CEN =T G =19 849

@’ being the value of ® when B = 0.

Choosmg a series of values of » from 0 to v, and evaluating £’ and ' and thence x and p
we obtain points on the curve up to all-burnt. Using a series of values of £’ from £, to &,
the curve can be completed.

The calculation is facilitated by using Tables 8.01, 8.04 and 8.06, which give log H as
a function of n/a, and b/a, 1,/M as a function of 6 and {;, and @’ as a function of (y — 1) M,
%, and 6.

The value of % at the point at which the pressure is a maximum can be determined by

putting dU' =0 in equation 8,38. Differentiating logarithmically and denoting values at
this point by suffix ,,

dg,’ dv, dy, (a—b—2v,)dy,

&/ _b—}—m_a—m =(a_7h)(b‘?"7h)
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But, from 8,18, dt,’ _ N, dy,
. g’ (@— 1) (& + m)
ence n=(a—b)/N + 2) 8,50

and &’ and ¥, can be evaluated from equations 8,33 and 8,38.
If q; > 7%, there is no true maximum and the greatest pressure occurs at all-burnt.

When 8'=0
E'=em (1 4+ n/Mn¥,)—Mn%C,
C'=(n + MnZ,)/Mng’
n=1/n
1/n=4/{(1 + 0)* —40,}

8.11. Solution when B is small
We will now consider what simplifications to the solution of Sections 8,02 to 8,09 can

be effected by treating B as a small quantity compared with £/z. Terms involving B need
not be calculated to the same degree of accuracy as that of other terms ; the shot-start pressure,
moreover, is generally small enough to ensure that {, is small compared with unity. Co-
efficients of B in the solution are therefore calculated for zero shot-start pressure.

The first simplification arises in equation 8,14 which now becomes
2o =G 8,51

and we can replace 2, by T, wherever it occurs in the solution. We notice in particular that
7, 18 now independent of B.

The second simplification is in the coefficients ¢ and ¢’ (equations 8,40 and 8,41), which
can now be evaluated in algebraic terms. When {, is neglected we have

3, =0
a=N(+0)
b=0
I/H=1—nv/a
Hence
1/£" = (1 — v/a)"
and
Ul n
f (n/€') dn =f (1 — w/a)"ndy
0 0
_ 1= —nfa*t 1 —(1—r/a)*+?
= N+ 1 - N +2 :I
= (1 4 6)%
h ) . J
where )\::\.2[]_{1-,'- (N+Dria}{l—mnla}¥+1] 8,52

(N+1)(N+2)

which is a function of N and »/(1 + 0).
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When 0 =0
A=1—[1+n/(1+ 8)] exp[— n/(1+ 0)]
Hence, from equations 8,40 and 8,41,
c=yA(1+ 6)’/M— % (y — 1) n?/M¥&
¢=yr (1 + 8FM + ¢

and

The third simplification occurs in the expression for ® in equation 8,45.

We have
=27, (E —B)Y
=& — B\ [1 —}(y — 1) 2*/M]
=EN T [1— 4 (y — 1) 24M] (1 —Be,)'™

from equation 8,36.
Since B is small, this can be written

® = @' [1 —(y — 1) Be,]
where O'=EN[1—1% (y — 1) n,)M]

8.12. Tabular solution for maximum pressure

8,53
8,54

8,55(a)

8,55(b)

8,56

In a good many ballistic calculations the value of the maximum pressure in the bore is

required without reference to the position of the shot when the maximum occurs.
more convenient to be able to calculate it direct from the loading conditions.

It is then
Moreover,

its value is generally required with greater accuracy than would be obtained by using the method

indicated in Section 8.10.

In this section we shall investigate a method of determining Z,’ (i.e. the value of ¥; when
B = 0) in tabular form direct from the loading conditions ; in Section 8.13 a correction will

be obtained for B, treated as a small quantity.

The equations for the calculation of ;" are

%o = Go

N = (@ —b)(N + 2)

g’ =H"

& =(a—m) (b + =)/ MNE/
Equation 8,24 can be written

Nz (1 + 0)2 = (a + b2 — 2 (v —— 1) N2MZ,
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Hence, using 8,21,

Mg, Nab
(TF6F (@a+8F—2(y—1) Nab
Nb/a

= (T +bla—2(y—1) Nbja

and MU,/(1 + 0)?is a function of N, b/a and v.

The second term in the denominator is generally small compared with the first term,
since it is of the same order as {,; moreover the range of values of y for propellants is
comparatively small. We may therefore replace y by a mean value. By choosing y = 1-25
the error incurred in the resulting value of ¥, does not exceed 2 per cent. for any propellant
in general use.

We therefore have

MY, Nb/a

(1 +6)2 (1 + b/a)*— }Nbja

and we thus obtain b/a as a function of N and M,/(1 + 6)

From equation 8,50, v,/a is a function of N and b/a ; therefore £,’ is also a function of
these two quantities. The equation for {," may be written in the form (using 8,38) :(—

ME' (1 —w/a) (b/a + m/a) M3
(1+6)* &' bla (1+6)

and we conclude that MZ,’/(1 4 0)? can be expressed as a function of N and ME,/(1 + 6)2

In Table 8.03 MZ,’/(1 4 6)? is tabulated in terms of MZ,/(1 4+ 6)? and the reciprocal
of N, the latter being a more convenient argument for tabulation than N.*

We thus have a means of determining {,” direct from the loading conditions.

It is important to observe that this table is only applicable when ' has a true maximum
during the burning of the charge. From equations 8,22, 8,42 and 8,50 the condition for a
true maximum is

N (1 — 0 + 20f,) < Mf, (N + 2)
which reduces to YM > (1 — 0)/f, 8,57
The critical value of yM is tabulated in Table 8.02 as a function of 6 and Z,.

When 0 = 0 we have from Section 8.10,

, 4 1 Mn2% 41
= [ e ]

® Elimination of &/a leads to

M¢'  1+IN [1+ 3+ 1N MCn]
(1+6)2 &' (1 + 2Z/N)? 2(1+1/N) (1 + 0y
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5 M{, Mn?Z,
ut T+ 62 1—2(y— 1) Mn?g,
Mm%,
= T— 1 Mn?,
when y = 1-25.

Hence M#n2{, is a function of MZ,/(1 + 6)? and therefore MZ,’/(1 + 6)? is a function of
MUZ,/(1 + 6). The entries in Table 8.03 corresponding to 1/N = 0 have been calculated from
these results, so that the table can also be used in this case.

The condition for a true maximum holds when 6’ = 0.

8.13. Co-volume correction for maximum pressure
If T, is the maximum value of ¥, equation 8,39 gives

G =t¢/(1—Bc) 8,58

where I’ and ¢’ are calculated for the value of % for which { is maximum. Let this value be
7;, and denote by v,’, the value of » for which ' is maximum.

Then m=mn +e

where ¢ is a small quantity of the same order as B.
Hence ¢’ may be calculated for n = »,".

Since ' is a function of w,,
T =20 +edl/dn+ 0()

where d{'/dy is evaluated for y = v,". But T’ is maximum for this value of 4 ; its derivative
is therefore zero.

Hence to the order retained T’ may be replaced by {,’ in equation 8,58.

Since ¢’ is a coefficient of B we evaluate it for {, =0. To reduce approximation as much
as possible, however, we evaluate only the first term of 8,54 for {, = 0 and retain the true
value of §," in the second term. Equation 8,50 then gives

n'la = 1/(N + 2)

Substituting in 8,52,

ON +3( N 4 1 |5+
(N+l)(N+2 [1 N+2{N+2} ]

The bracketed term is practically constant for all useful values of N, varying only from 0-25
to 0-264 and back to 0-25 as 1/N increases from — % through zero to infinity. We choose
0-26 as a suitable value and thus have

A = 0-26 N2/(N + 1) (N + 2) 8,59

When 6" = 0, A, = 0-26 approximately.
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Using 8,54 equation 8,58 now becomes
&= &'/[1—B{& + (1 + 6)*y»/M}] 8,60

The second term in the coefficient of B in equation 8,60 appears to be large when M is
small and so to vitiate the approximation. This in fact is not so, since
N 0-26 N2 B 0-26 M
M™TMN+1)(N+2) (M+ 06) (M + 26"

and is small for small M except when 0 is small. In the latter case the condition 8,57 for
maximum pressure is not satisfied when M is small and equation 8,60 is not applicable ; the
greatest pressure is then at all-burnt.

8.14. Tabular solution for muzzle velocity
From equations 8,47 and 8,48 it is evident that if ® can be obtained direct from the loading
conditions, the muzzle velocity can be determined with only a small amount of calculation.
From equations 8,55 and 8,56,

® = &' [1 — B,/

and we require @’ and ¢,’ directly in terms of the loading conditions.
Dealing first with @’, which is given by equation 8,56 as

O =(ENT[1—13 (y—1) 0,/M]

we shall show that it is a function of the three arguments, (y — 1) M, g, and 6.

Since 2, = ¥, (equation 8,51) equations 8,23 and 8,24 indicate that (a — b)/N and (a+5)/N
are functions of (y — 1) M, ¢, and 6. Hence a/N and b/a are functions of these quantities.

From 8,19 and 8,20, N/M and (y — 1) N are functions of (y — 1) M and 0.

It 1s evident from T'able 8.04 or equation 8,43 that v,/M is a function of {, and 6. Hence
n./a and 3 (y — 1) n,%/M are functions of (y — 1) M, &, and 6.

Since H, is a function of 7,/a and b/a it is also a function of these three quantities.

But £, = H," (from equation 8,33).

Hence (£,')Y~! and @’ are functions of (y — 1) M, &, and 6.

These two functions have been calculated for a series of values of the three arguments
covering all conditions likely to occur in practice and we have found that it is possible to avoid
cumbersome, triple-entry tables by means of good approximations. We shall here consider
@’ and refer to (£,")*~" in the following section.

We have found that 1/®’ is very nearly linear in (y — 1) M, so that
1/0'=1—(y— 1) MI + Gy

where I is a function of {; and 0, and Gy is a small correcting term in which G is a function
of §, and 0, and y is a function of (y — 1) M. The functions I, G and y are tabulated in
Table 8.06 and form a very convenient means of determining @’ ; the value so obtained is
generally within O-1 per cent. of the true value.

The coefficient ¢,’ is a function of M, v, {, and 0 and as it is a coefficient of B it is generally
sufficiently accurate to calculate it for a mean value of y and for zero shot-start pressure.
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Goldie has found, however, by numerical integration, that the true ¢,’ as deduced from equation
8,41 is sensitive to {, when M is large and 0 is small ; in fact, an appreciable error in muzzle
velocity is incurred by neglecting g, in these circumstances, despite its being a coefficient of
B. He has tabulated a correction to ¢, for {, = 0-1.

Combining this correction with calculated values of ¢,” for {, =0, we have found that
¢,/ can be represented empirically, with sufficient accuracy, by the expression

. (140p+25ME
2 =116+ M (028 — 0-0860) |2

which i1s a convenient form for calculation.

To determine the muzzle velocity we therefore obtain 1/®’ from Table 8.06 ; then
® = @' [1 — B, ]!
or approximately,
O =0 [1—(y—1)Be,]
=1—®[;— B]-¥
and
v = 2 FCE/(y — 1) w,

This method is applicable in the case when 6’ = 0, the value of ®' being obtained as
indicated above from Table 8.06.

8.15. Tabular solution for all-burnt

A ready method of determining the position of the shot at all-burnt is useful to enable
us to ascertain whether the charge is all burnt in the gun. It is also useful in the calculation
of the greatest pressure when there is no maximum.

An approximation similar to that indicated in the last section can be used for the
reciprocal of (£,)""'; it is

() Y=1—(y—1)MJ]—KY

where ] and K are functions of {, and 6 and Y is a function of (y — 1) M. These functions
are tabulated in Table 8.05 and values of (E,)Y~! obtained thereby are generally within 0-2
per cent. of the true values. This order of accuracy is more than sufficient for all practical
purposes.

Having obtained (£,')Y ', £,’ can be obtained at once from Table 8.07 which gives values
of X¥~! for useful values of X and y.

Equation 8,36 gives

8. =28 (1—Bg) + B

from which the position of all-burnt can be deduced.
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When there is no true maximum for the pressure, that is, when YM < (1 — 6)/f, (see
Table 8.02) the greatest pressure is that at all-burnt, and we require &,.

We have, from 8,45,
G2 =@ (&, — B)f

Hence
L= @°/(1 — Bey') ()Y

and ¥, can be calculated with the aid of Tables 8.05 and 8.06.

8.16. Muzzle velocity when the charge is not all-burnt in the bore

Cases where £, > &, are not sufficiently numerous to justify a tabular solution ; we will
therefore indicate the method of determining »; from the results already obtained.

The first step is to calculate ¢, from equation 8,53. Since it is a coefficient of B an approxi-
mate value will suffice. We therefore use the approximations,

H;" =g\~
and ny'/a=1—1/Hy
We now determine log H; from equation 8,34 in the form
log H; = [log &; — log (1 — Bc;)]/N
whence, from Table 8.01, n,/a and therefore »; can be determined.

When 6’ =0, ¢; is calculated from 8,53, using the approximation
nn;" = Ing;

&' = &5/(1 — Bc,)

and 7; is obtained by successive approximation from

Then

ey = E (1 -+ n3/MnZo)Mr'%,

8.17. Pressure-space curve when B is small
When the pressure-space curve is required to a greater degree of accuracy than that

obtained by the method of Section 8.10, co-volume corrections are applied to the values of &’
and T’ during the burning of the charge. These corrections are given by the equations
£ =& (1 —Be) 8,34
C="C/(1—Bc) 8,39

and ¢ and ¢’ are calculated from equations 8,52 ,8,53 and 8,54.
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When a maximum pressure exists {, is obtained from Table 8.03 and equation 8,60.

For the calculation of the corresponding value of &, a more accurate value of »; than that
given in Section 8.10 is required. This is obtained as follows :—

Differentiating equation 8,09, putting d{ = 0 and using equation 8,11,

Ym = M (1 + Bg)) dz,/dy,
But, from equation 8,25,
M dz,/dy, = (a — b)/N — 26%,/M
Hence
0" (a — &) (1 4 BY))

= 1
=M F 20 (1 + BY) 8,6

For the calculation of &, from this value of v, we have, from equations 8,25 and 8,61

N 5l B ¢ S
=S M[1+Bc1+M]
Hence, from 8,09, neglecting Bz, compared with unity,
& = Co/& + [3(y + )M + 6(1 + BE,)] n,H/M2E,

&, m[N41 Bo
n By

After all-burnt,
CE—BY=C(E—BY=0 8,45

= @' [1 — Be, ]V ! 8,55
and T is obtained in terms of £ with the aid of Table 8.06.

8.18. Energy losses

With the exception of loss of heat, the energy losses are allowed for in the ‘‘ equivalent
mass moved,”” w,, as described in Chapter VI. The loss of heat up to the point of maximum
pressure is generally small ; in the solution for the pressure-space curve the approximation
is such that loss of heat may be neglected ; correction for this loss need, therefore, be applied
only to the solution for muzzle velocity.

The correction is applied in this case by reducing the thermodynamic efficiency by a small
amount dE. To determine this amount a large number of experimental results were analysed ;
the shot-start pressure was deduced, in each case, from the observed maximum pressure and
the theoretical efficiency was then calculated by means of equation 8,47. The practical efficiency
was calculated from equation 8,48 using the observed muzzle velocity. The difference dE
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between these two efficiencies was thus obtained and it was found to depend, as might be
expected, on the expansion ratio and the loading density. A number of arguments were tried
for the purpose of plotting dE and the most satisfactory was found to be (§; — 1) 4/(A}/FC).
In Fig. 8.01 the results of the analysis are shown and it appears that the correction can be
expressed by the linear relation,

dE = 0-024 (£, — 1) 4/(Al/FC) — 0-006

for all useful values of the argument.

The experimental results used in the analysis were derived mainly from firings with MD
and SC cord, but the empirical values of dE thus deduced have since been used with success
with other propellants and shapes.

06 4

e5 4

04 4

cYy +

0?2 4

0+
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E—V(AIFC)
Fig. 8.01

8.19. Practical application of the system

UNITS

All quantities occurring in the tables are dimensionless and are therefore independent of
the system of units. The quantities &, v, §, M and B, however, will only have their true values

H
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if the physical quantities on which they depend are expressed in consistent units. Conversion
for use with practical units is made by means of the following table, the system of consistent
units being the inch, pound and second :—

Factor to Convert
Quanti Consistent Practical Quantities from
uantity Unit Unit Practical to
Consistent Units
A sq. ins. sq. ins. 1
C lbs. Ibs, 1
D ins. ins. 1
F in.-poundinals in.-tons per Ib. 8-653 x 10°
per Ib.*
P poundinals per tons per sq. in 8:653 x 10°
sq. in.*
ins. ins. 1
B ins. per sec. per ins. per sec. per 1/(8-653 x 109)
poundinal per ton per sq. in
sq. in.*
t secs. secs. 1
v ins. per sec. ft. per sec. 12
w Ibs. Ibs. 1
x ins. ins. 1
w1 Ibs. lbs. 1

* The term *‘poundinal” is used to denote a force which would produce an
acceleration of 1 in. per sec. per sec.when acting on a mass of 1 lb., hence the
conversion factor in F, p, and B above is 2,240 x 12 x 32-19, i.e., 8- 653 x 10,

Data for some typical propellants are given in practical British units in Table 8.08.

CRUSHER PRESSURES

The crusher gauge (see Chapter XIII) is widely used in routine work to record the maximum
pressure developed during a firing. The readings obtained from it are, however, of a
comparative nature only and the true pressure is appreciably greater. Comparison between
piezo-electric gauges (see Chapter XIIl) and crusher gauges shows that the true pressure
s approximately 20 per cent. greater than the crusher pressure. Moreover, the pressure
measured by the gauge in a gun is generally the pressure at the breech end, whereas the pressure
calculated by the foregoing method is the mean pressure of the gases. It therefore follows
from equation 7,18 that

P =12p/(1+ ; Clw)

where p. is the crusher pressure.
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8.20. Collected formulae for use with practical units

PRESSURE-SPACE CURVE
Al =K, —C/5

£y = 1 4.2,/ = (K, — C/8)/Al
w, = 105w + 1C
%, = Alp,/FC
M = 8653 x 105 A2D¥FCp,
=0+3(y— 1M
N = M/6’

a—b = Ny/{(1 + 0)* — 40%}

a+b=Ny{(1+08)+2(y—1)MG}

whence a and &.
7, from Table 8.04.
For a series of values of n from O to 7,,
£ = B
¢ =(a—n) (b + n)/MNE
For a series of values of &' from £, to &,
U= 0/E)
For maximum pressure,

n = (a— b)/(N + 2).

Finally,
x=1E&—1)
p =FC{'/Al
Notes.
If YM is less than the critical value (Table 8.02)
cll — czl

If £," > E, the charge is not all burnt in the gun.

c.in.

1b.

in.

tons/sq.in.

(Table 8.08)

(Table 8.08)
(Table 8.08)
(Table 8.08)

(Table 8.01)

(Table 8.06)
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1/n = /(1 + 6)2 — 4 6%}
& = em (1 4 n/Mal)—Mm*C
¢ = (n 4+ MnZ,)/Mn¥’

n = 1/n.

PRESSURE-SPACE CURVE WITH CO-VOLUME CORRECTIONS
During burning,

Nz

A= N+ 1)(N+2) 1—{ 1+(N+l)n/a}{l-—~q/a}"+‘]

or when 6" =0
A=1—[1+4 7/(1+ 6)]exp[—=n/(1 + 6)]

c=yr(1+ 0)YM — }(y —1) n*/M¥
¢ =yr(1+4+0M+ ¥
E=¢(1—B
¢ =t¢/(1—Bd)
For maximum pressure,
A = 0-26/(1 + 1/N) (1 + 2/N)
4=/ 1 —B{g + (1+ 6)ya/M}

_ 0 (@a—b) (1 4 BY)
™= 1M + 26 (I + Bg)

%, r2[N+1 B6
f= g i g+

After all-burnt,

{ = ® [l — B, [E — B}~
Finally,

x=1(E—1)

p = FCY/Al

(Table 8.03)

(Tables 8.06 and 8.07)

in.

tons/sq.in.
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MAXIMUM PRESSURE, ALL-BURNT, MUZZLE VELOCITY AND MUZZLE PRESSURE.

Al =K,— C/3 c.in. (Table 8.08)
& =1 + xy/l = (K; — C/8)/Al

w, = 105w + 3C Ib.

B = C (b — 1/8)/A! (Table 8.08)
%o == Alp,/FC (Table 8.08)
M =8653 x 10° A2 D?/FCp%p, (Table 8.08)
0 =0+3(y—1)M (Table 8.08)

/N = 6//M

Maximum pressure,
G=4'1—B{§" + (1 + 8)* y»/M}] (Table 8.03)

A = 0:26/(1 +1/N) (1 + 2/N)

p = FCg /Al tons/sq.in.
If yM is less than the critical value (T'able 8.02)
G =T, = ®/(1 — Be,)') ()Y (Tables 8.05, 8.06, 8.07)

All-burnt,
. (1 + 6)* + 2-5 Mg,
2 = {(TF 0+ M(-280—-0860) )2

£, =E&'(1—Bcg’) + B (Tables 8,05, 8.07)
x,=1E—1) in.

Muzzle velocity,
E=1—®' [l —Be/]"" [, — B]"Y (Tables 8.06, 8.07)

dE = 0-024 (£, — 1) \/(Al/FC) — 0-006

v, = 120201 C (E —dE) (f/s)? (Table 8.08)

y—1 w,

If £, > &;, proceed as in Section 8.16,

v; = FCfx,/12AD f/s. (Table 8.08)
Muzzle pressure,

t, = (1 — E)(% — B)

p; = FCZ,/Al tons/sq. in.



CHAPTER IX

OTHER METHODS FOR A LINEAR LAW OF BURNING

9.01. In the last chapter a general solution of the internal ballistic equations was given for a
linear law of burning ; this was followed by special solutions for maximum pressure, muzzle
velocity and pressure-space curve for the case when the quantity (b — 1/8) is small. In the
present chapter we shall consider some other systems of internal ballistics which are based on
these equations, or on modified forms of them.

Before giving details of some typical solutions it will be convenient to outline briefly the
chief points of difference between the various methods that have been developed from these
equations.

9.02. Differences between various methods
These differences can be grouped in four categories :—
(a) Assumptions regarding the form function.
(b) Initial conditions.
(c) Methods of allowing for energy and heat losses.
(d) Other approximations.

With regard to (a), we have seen in Chapters IV and V that there are two methods of
treating the burning of the charge. Ome, based on Piobert’s law, leads to an algebraic expression
for the form function in terms of the thickness of grain remaining at any moment ; with this
is coupled an expression for the rate of burning down the normal to the surface of the grain.
The solution of Chapter VIII is based on this method, the relevant equations being 8,03 and
8,04. The other method, due to Charbonnier, expresses the mass-rate of burning of the
charge in terms of the fraction of charge burnt at any moment and can be deduced directly from
closed-vessel experiments. This leads to a different form of solution, an example of which
is given in Section 9.04. (Sugot’s method).

With regard to (b), the generally accepted treatment is to assume, as in the solution of
Chapter VIII, that the shot starts to move when the pressure reaches a certain value. In
a few methods, however, the shot-start pressure is taken as zero and an empirical adjustment
is made to the propellant size or to the rate of burning coefficient or to both. This leads to a

simpler solution and generally avoids the use of double-entry tables ; it is not, however, so
successful in practice.

With regard to (c), a general survey of the methods of allowing for energy losses was
given in Chapters VI and VII. In most systems of internal ballistics the method of modifying
the mass of the shot is adopted and differences between the systems occur mainly in the numerical
coefficients used ; for example, the fraction of charge weight added to allow for the kinetic
energy of the charge varies in different systems from 0-25 to 0-5. Two methods of allowing
for loss of heat have already been mentioned, namely, that in which the value of y is modified,
and the Hunt-Hinds method, in which an empirical adjustment, based on a large number of
experimental results, is made to the thermodynamic efficiency. In other methods corrections
for heat loss are applied directly to the calculated pressure and velocity, while in yet others
the rate of burning coefficient or the propellant size is adjusted empirically. In many cases
these adjustments also allow for errors due to approximations made in the system.

All such modifications are in the nature of approximations, but in many methods other
approximations are made with the object of simplifying the solution of the ballistic equations
and facilitating tabulation and numerical calculation.

102
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In many cases approximations are made in the energy equation 8,01.  In some the co-volume
term Cz (b — 1/3) is neglected ; in others z is replaced by a mean value in this term. In a
few methods the more drastic approximation is made of neglecting the kinetic energy term,
#(y — 1)w,9? during the burning of the charge. Such approximations lead to solutions
in algebraic form.

One example of a simplifying approximation in the solution was given in Section 8.11,
in which coefficients of B were calculated for zero shot-start pressure. This reduced the

7
integral I (n/€’) dq to algebraic form. Other examples are given in the solutions outlined
0

in this chapter.

Approximations in tabulation are generally made to reduce the number of arguments or
independent variables in the tables. Finally some methods are designed to give an accurate
solution for one shape of grain, namely for that giving constant burning surface, and
approximations are introduced for other shapes whose burning surfaces are nearly constant.

9.03. Since the methods to be considered in the following sections are based on the ballistic
equations of Chapter VIII, or on modifications thereof, the appropriate formulae for each
method can be derived from the solution given in that chapter. To save space and to facilitate
comparison, we shall derive the formulae in this way.

To use the special notation of each method would cause great confusion, as different authors
denote different quantities by the same symbol. We shall therefore use the notation of the
last chapter wherever possible and indicate divergencies from it where necessary.

The order in which the methods are treated 1is as nearly as possible chronological.

9.04. The method of Sugot

This method was developed in France and was first published in 1913; * it appeared
in its final form in 1928.+ A complete solution is given using Résal’s energy equation and a
shot-start pressure ; approximations are subsequently introduced into the solution to facilitate
numerical calculation.

Charbonnier’s form function is used and the burning of the propellant is therefore
represented by equation 5,15 (with « == 1) namely

dz/dt = Qp:(z) 9,01

Since the constant Q and the function @(2) can be determined experimentally for given
shape, size and nature of propellant, no theoretical assumptions are made concerning the burning
process.

Equation 8,02 can be written

w, dv/dt = Ap
Hence, v = AV/Quw,
where V= J dL 9,02
.. 9(2)

® Mémorial de I’ Artillerie Navale, Vol. VII, 1913.
+ G. Sugot, Balistique Interieure, 1928,
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As we saw in Section 5.12, this function of z and z, can be determined directly from closed-
vessel experiments.
From 8,06 and 8,08 we obtain
7 = Muw, v*/FC
and if we now define M in the form
M = A2/Q?FCu, 9,03
equations 8,09, 8,10 and 8,11 still hold, and
n =MV 9,04
If burning proceeds according to Piobert’s law (see equation 5,16),
Q=(1+6)gD
for all shapes commonly used. Hence M as defined above is to M as defined in equation
8,08 in the ratio 1 : (1 + 0)? while the n defined above is to that of Chapter VIII in the ratio
1:(1+ 6). The solution, however, is not dependent on Piobert’s law and is applicable in
all cases where the burning can be represented by equation 9,01.
To obtain the shot-travel in terms of =z Sugot chooses as dependent variable

y = (& — B/k)/(1 — B/k) 9,05

where 1/k is chosen arbitrarily as a fraction.

From 8,34 we have
B B 1
y=¢&|1+ m{l——a—,-—-kc}:l

which is expressed in the form

B MBE D .
v [y s °""[J;(Y' —"‘1‘)] 9,06

where D and E are functions of 2z, 2, and 3(y — 1)M. (No confusion need arise between
this function D and the constant D previously used to denote web thickness ; E, moreover,
is in no way related to the E used to denote efficiency in Chapter VIII).

Clearly,

y
_ ' dn .
D=3(y—1Dn§=4%(y— 1)'[0 Mz —3(y —1) 7 (from Section 8.06)
* V. dz
=r J“o Cp (3) z—er 9,07

where r=}(y—1)M
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1 1
and E=ﬁ[l ——?——kc:'
— _1. (1 —k3)d(1/E) (from equation 8,35)
M VE

_ J‘"‘ V 11—k d_z
 Jz 9(z) 2—rVE ¥

9,08

Sugot states that the object of introducing the fraction 1/k is to obtain the solution as a
sum of two terms of which one is small, powers of which can be neglected in developing formulae

for practical use.
The pressure is given by

z—1rV?

C=0T—BRy—B: 1Bk

which follows at once from 9,05 and 8,09.
After all-burnt, y is defined as
y =(E—B)/(1 —B)
Denoting by y,” the value obtained from equation 9,05 when z = 1,
¥ = (8, — B/k)/[(1 — B/k)
& —B _(1—B/k)y,,—B 4 Bk

Hence Y2=7_"F = 1B
and, from 9,09
¢ - 1—=rVy
279, (1—B)
The pressure and velocity can be deduced from 8,45 and 8,46 :—
L =T (y/9)

vt = [1 — (1 —rV.2) (rafy)*—'] 2FC/y — 1) m,

Maximum pressure
Differentiating 8,09, putting d{ = 0 and using 8,11, 9,02 and 9,04 leads to

YVi/ 9(2z) = 3 (y—1) (1 + BE))

9,09

9,10
9,11

9,12

This equation, with 9,05 and 9,09, determines the position of the shot and the pressure

when the latter has a true maximum.
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9.05. Approximations
The function D can be expanded as a power series in r in the form :—

D =W+ W + ...

Y L 6
where W= J‘xom dz, W = J.lozz—(f-(z)- dz...
Hence e®=1—rW—r2U
where U=W — 1 W

In the case of constant burning surface, for which ¢(z) =1, e =1—rW exactly,
when 2z, = 0. Since z, is usually small, the term in 7? will also be small for practical values

of r and the following terms will be negligible for shapes approximating to this type.
Hence, from 9,06

y =[1+ rBE/} (y— 1) (k— B)][1 —rW — 2U]~2(Y—D 9,13
This, combined with 9,00 gives the pressure-space relation.
The functions W and U can be tabulated in terms of z and 2z, ; the function E occurs in

a term that is small and need only be evaluated approximately.

Maximum pressure

We write
R, =yVi/ (y — 1) o(21) 9,14
Then equation 9,12 becomes
rR, =1 + BY, 9,15
Denoting values of y, and %, by y," and %" when B =0, we have, from 9,13 and 9,09,
W. U T—2—D
[ W _1:| 9,16
7 [ R, R?
&= (=1 — V¥R [y’ 9,17
Then, neglecting squares and products of the small quantities BY;, BE,/R, and U,/R;?
»_,___BG
o 1 F—B 9,18
and
CI BFI
T 1— B 9,19
where
_E | LW,
%(T“])GI—R1+RI_WI 9,20
and 2
F, — G, + 1 —kz, RT, V, 9,21

»' + 2 R, —V;?
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For given & and v, the quantities R,, ," and ¢,’ are functions of 2, and 2, only. Moreover,
since E, occurs only in terms containing B, it can be evaluated for r = 1/R, and then G, and
F; are also functions of 2, and 2, only. Actually tables of y,, {,’, G, and F, have been calculated
in terms of R, and z,.

A method of successive approximation is used to determine {; and y,. First an approximate
value of {, is obtained by means of 9,19, taking R, = 1/r. Thence a more accurate value of
R, is obtained from 9,15. The process is now repeated until further approximation is
unnecessary.

Muzzle velocity
For unburnt charges the muzzle velocity is obtained by solving 9,13 for z with

y=y:=1+4x/(1—B/R) I

A first approximation is obtained by neglecting terms in B and 7?; the value of 2z so
obtained is used to compute E and U and a second and sufficiently accurate approximation
to 2z is then determined from 9,13. The muzzle velocity is then obtained from

22 =2rFC V3 (y — 1w,

When burning is complete in the bore, the muzzle velocity is obtained from 9,11 in the

form
02 =[1—=Y '] 2FC/(y — 1) w,

where Y=(1—7rV2)yr!
¥i=1+x/(1—B)!

1— B/k)y,, — B + BJk
nd yo— LBy —B+ B

¥, 1s obtained from 9,13 with 2 = 1.
Y is a function which is closely allied to @ of Section 8.09.

9.06. Numerical tables
Sugot’s primary tables relate to maximum pressure, position at all-burnt and muzzle

velocity and are calculated for the French ‘ Poudre B,” for which
F = 9,500 kg/sq.cm./gm./c.c., b =095 c.c./gm,,
1/8 =0-67 c.c./gm., y =125,
French powder is generally used in tubular form and Charbonnier’s form function for tube,

p(2) = (1 —2)**

is therefore adopted.

The value of & is chosen as 2:5 and the tables arec compiled for a shot-start pressure of
400 kg./sq.cm. With these data it follows from 8,14 that %, is determined when A (the
loading density)* is known ; most of Sugot’s functions may then be expressed in terms of

* A = C/K,.
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r and A alone. The tables enable maximum pressure and muzzle velocity (when all-burnt
is inside or outside the bore) to be calculated rapidly ; tables are also constructed to facilitate
the analysis of experimental firings.

Sugot’s secondary tables give differential coefficients for variations of the initial conditions.
They are derived by differentiating the expressions for maximum pressure and muzzle velocity
and by numerical differentiation of the relevant tabulated functions. The coefficients are
denoted by m. and /; and are defined by the equations :—

ap, . 94X dv, _, dX
pl-—m.\'x ts%:rx

where X is an initial value.

Coefficients are tabulated for variations in vivacity, Q, force constant, F, weight of shot,
weight of charge, chamber capacity and shot-start pressure ; the muzzle-velocity coefficient
for variation in shot-travel is also given.

With the aid of these tables ballistics can be calculated for powders with somewhat different
characteristics from those assumed in the primary tables and for somewhat different shot-start
pressures.

9.07. When this method first appeared in 1913 an approximation was made to facilitate the
solution of the equations ; this approximation was subsequently removed and the solution
as outlined in Section 9.04 is an exact solution of the equations.

The approximations introduced to facilitate tabulation are good for shapes of grain giving
constant or nearly-constant burning surface, but for shapes with larger values of 6 notably
cord, they give rise to serious errors for all but very small values of M.

Sugot allows for bore resistance by increasing the shot weight by 7 per cent. To obtain
agreement with observed pressures he adjusts the rate of burning coefficient Q.

9.08. The method of Crow

This method was first published in 1922 as a development of a method given by
IF. B. Pidduck in 1918.* The co-volume term is entirely neglected and the kinetic-energy term
in the energy equation is neglected during the burning of the charge. The shot-start pressure
is taken as zero and allowance is made for band engraving by an empirical reduction of the
size of the propellant grain. The form function is based on Piobert’s law and equations 8,02,
8,03 and 8,04 hold.

The appropriate formulae can be derived from the solution of Chapter VIII by putting
B = 0and £, = 0 throughout, and + -= 1 during the burning.

From Section 8.05 we deduce

7, =N (1 -f) 9,22

N == MO

N (1 0] = [(1+ 0)/(1 - O] 9,23
When 8§ = 0 this reduces to

e — eMU- ) 9,24

®* A. D. Crow, Research Dept. Report No. 38,
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From equation 8,09,
T =3k
The pressure-space curve is given by
C= (1 + 0) (B — 1)/BE1+2n
When 6 = 0O this reduces to

¢ = In E/ME

From 8,50, the maximum pressure occurs when
n =N (14 0)/[(N + 2) = (1 + 6)/(1 + 26/M)

and the condition for a true maximum is
M>1—80

The shot-travel at maximum pressure is given by
& =[N+ 2)/(N + DJ¥

and the maximum pressure by

(1 + 6)2 (N + 1)¥+!

G=TaN o
When 6 =0,

n=1

EL=e

g, = 1/eM

A good approximation to 9,30 is

r — (1+0) (1 + 0)
P78 (eN + 4) — eM + 40
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9,25

9,26

9,27

9,28

9,29

9,30

This agrees exactly with 9,30 when 6 = 0 and differs from 9,30 by less than 1 per cent.

for all useful values of 6 and M.
Hence the maximum pressure is

FC (1 + 0)?
P+ = RT(eM + 20)
All-burnt occurs when
n =M
£, = (14 0y or ¢€" when 6 =0
Cz = ]/Ez

9,31
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These values, being derived for y = 1, cannot, of course, satisfy equation 8,09 when
y differs from unity. To determine the motion after all-burnt we must therefore use this
equation in its differential form, with 2 = 1. Since B is still neglected, the equation takes
the form

d(Z8) + (y — 1) ndy/M =0

which, with 8,11 leads to
YCdE + EdL =0

Hence, for the pressure-space curve after all-burnt we have
Y =0
where O =C, 8 T=E""= (14 6)N0—D

When 6 = O this reduces to
O — MY—D

The velocity is obtained by integrating from all-burnt ;

7= =2M (L& —TE)(y—1)

Hence n? = M2 + M{(r)
where r =2E[E,
wd W) =2 (1 — =)y — 1)

The muzzle velocity is given by
vy = FC [M + (r5)] /e,

When the charge is not all-burnt in the bore, the muzzle velocity is obtained from equations
9,22 and 9,23 or 9,24.

9.09. This method, which has been in use in the Research Department, Woolwich, for many
years, is very simple in application. Owing, however, to the approximations made, more
particularly in the energy equation, considerable adjustment is necessary to bring the resulting
formulae into agreement with experimental results.

To compensate for neglecting the kinetic-energy term in the energy equation, the force
constant F is reduced in value by from 8 to 12 per cent., the actual percentage depending mainly
on the nature of the propellant. This constant is further reduced to allow for heat losses by
dividing it by the factor (1 + 1/11d) where d is the calibre in inches.

The effect on maximum pressure of neglecting B can be deduced from equation 8,60
while that due to neglecting {, can be deduced from Table 8.03. For ordinary ballistic con-
ditions the effect of each is to reduce the pressure by 10 to 15 per cent. The effect of neglecting
the kinetic-energy term can be deduced from

~ FC(1 + 8y
L AT (M + 49))

9,31a
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which is the form 9,31 takes when the term is retained. For ordinary ballistic conditions the
effect is to increase the pressure by 8 to 18 per cent. These three effects, together with the
8 to 12 per cent. reduction in F, combine to give a pressure some 20 to 30 per cent. lower than
the true pressure. Equation 9,31 therefore gives an approximation to the pressure as measured
by the crusher gauge.

To obtain agreement with observed values, as recorded by the crusher gauge, an empirical
correction is applied to the size of propellant grain. ~ Since the size D occurs only in the parameter
M in the formula, this correction is in practice applied to this quantity.

The corrections to F and M are retained in the calculation of muzzle velocity and a further
empirical correction is then required to obtain agreement between calculated and observed
values. This correction has been determined from a large number of experimental results
and depends on the maximum pressure, propellant size and capacity ratio of bore to chamber.

It is thus evident that this method can at best be considered to be a convenient means of
interpolating for maximum pressure and muzzle velocity between known experimental results ;
it is liable to break down when extrapolation is required beyond existing experience. It also
fails to give a pressure-space curve in reasonable agreement with experiment.

9.10. The method of Coppock

This method was developed in the Research Department, Woolwich, in 1942* as an
extension to Crow’s method, with the main object of obtaining a more realistic pressure-space
curve. The method was subsequently modified by Lacey and Rustont and it is this modified
version which is considered here.

The complete energy equation is used and the solution is based on equations 8,01 to 8,04.
The shot-start pressure is assumed to be zero and band engraving is allowed for by an empirical
reduction of the size of propellant grain.

The pressure-space relation is given in the form

E=1+Er—BEip 9,32
¢ = %/(1 — BXa) 9,33

Comparing these with 8,34 and 8,39 it is evident that
=8 —1 & = ct

=0 s=c

and all four functions are independent of B.
Since z, = 0, these functions can be expressed in terms of two arguments if a mean value
of y is assumed. They were actually tabulated in terms of 6/M and »/(1 + 0), for y = 1-25.
After all-burnt, equation 8,45 gives the relation between { and £ ; using 8,30 we obtain

C(E—B)Y = & (5 — B)Y = [1—} (y— 1) M] [5,— BJ™" 9,34

&, is obtained from 9,32, the value of », being M.
For maximum pressure equation 8,61, which is true for all values of B, takes the form

R — 14 BCI
T+6~ y+2(1+ B)0/M

9,35
when z, = 0.

® Armament Research Dept. Ball. Report 82/42,
+ Armament Research Dept. Ball. Report 29/45,
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Using this in conjunction with 9,33, tables of {, were calculated in terms of M and B for
a series of values of 0, y being taken as 1-25.
For muzzle velocity, we have from 9,34

O =[1—3} (y—1) M] [&, — BJ"™"

Hence, from 8,47 E=1—[1—4(y—1)M]rs—
where r, = (£, — B)/(E, — B)
Hence, from 8,48 0,2 = 2 FCE/(y — 1) w,
=M+ {1—3(y—1)M}{(r;)] FC/w, 9,36
where ¢ =2(1—r"M(y—1)

and is tabulated in terms of r for y = 1-25.

9.11. No approximations have been made in the solution of the equations except to assume
a mean value of y for all propellants. The method of allowing for band resistance by reducing
the value of D has been tested against experimental pressure-space curves and has proved to
be successful. Since D occurs only in the parameter M in the formulae for pressure, the
reducing factor is applied to this quantity in practice. The factor, which is based on true
pressures, is found to take the form j — k/p, where j varies from 0-9 to 1-1 for different propellants

and k varies from 3 to 4 tons/sq.in.
In the calculation of muzzle velocity £, must first be found from 9,32 ; the calculation is

therefore not so simple as it appears in 9,36. An empirical correction is required to the
calculated value to bring it into agreement with experimental results, the former being usually
from S0 to 100 f.s. greater than the latter.

9.12. The method of Goldie
This method was developed in the Armament Research Department in 1944* in an attempt

to apply, as closely as possible, the exact solution of the equations to ballistic practice. A
shot-start pressure is postulated and the complete energy equation is used.
The pressure-space relation is given by the equations

—Bz =& (1 — Bc) 9,37
T (& — Bz) =z, (1 — n/a) (1 + 0/b) 9,38

The first is equation 8,36 and the second can be derived from equations 8,21 and 8,30.
£’ is obtained from equation 8,33, namely

E_,’:HV

* A. W. Goldie Armament Research Dept. Ball. Report 10/45,
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and log H is tabulated as a function of n/(a — ) and 4ab/(a — b)2.. Equations 8,21 and 8,23
give
ab = MNz,

a—b=Ny/[(1 + 0)? — 46z,

The coefficient ¢’ is evaluated for {; = 0 as in Section 8.11, and 6’¢’/(1 + 6)? is tabulated
as a function of n/(a — b) and 6/M for the mean value, 1:25, of v.

These tables enable ¢ and £ to be calculated using n/(a — &) as a parameter.

Maximum pressure
The formulae used in calculating the maximum pressure are

G =zo(1—m/a)(1 + n,/b)/8," + BL ¢ 9,39
which follows at once from 9,37 and 9,38, and

0 (a—)(1 + BY)
" = M+ 29 (1 + BY) %40

which is equation 8,61 and is true for all values of B.

Elimination of 7, from 9,39 and 9,40 gives an equation for {; but its form is very
complicated.

However, if we write p = B, and expand g, in the form

, 14 %L,
L=0"+p¢ (b_p)o+ ‘5*’2(0,7)0 4+ ... 9,41

where suffix , denotes values when p =0 we find that the third and subsequent terms are
negligible, so that {, is approximately a linear function of p.

Now p lies in the range 0 < p < 0-15 in practice, being usually near 0-1. Thus a
convenient method of using the approximate linear relation is to take it through the points
p =0 and O-1.

Then G=@)+(—01)4, 9,42

where ({,)., is the value of §, when p = 0-1 and
“Pj =10 I.(tl)l - tl‘]

The error of 9,42 can be roughly assessed by evaluating the third term of 9,41 for p = 0-05
and 0-15 when 2z, = 0. For zero shot-start,

(a_g) (14 8y (y (N + 1
Y o (N + 2+

and the maximum value of this, remembering that only values of M > (1 — 0)/y are under
consideration, is 0-43 at 0 = 0 (y = 1-25). For 6 = 1 the maximum value is 0-165 (y = 1-25).

The maximum error of 9,42 is thus about 0-:0016 or about 0-3 per cent. of {,. The average
error is much smaller, being of the order of 0-1 per cent.

I
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If the greatest pressure occurs at all-burnt, v, = 7, and 7, does not contain p ; ¢, is
therefore an exact linear function of p. Hence, 9 42 is valid in all cases. From it we calculate
L, directly from the formula

&= [(Cl)l— 0-1 \Pl]/[l —B 4‘1] 9,43

(This equation may be written

L=C5[(1—B4{,)

and comparing with 8,58 and 8,60 we see that {, is akin to ¢,” although calculated in a different

way.)
Numerical tables are available, for a series of values of 6, of (%)), in terms of M’ and z,,

and of ¢, in terms of M’ only, but with a correction table to allow for the minor effect of z,.
The tables were constructed for y = 1:25 and other values of y are allowed for with
negligible error by the parameter

M =Ml + % (y — 1:25)]

The validity of this can be seen in the case when B = 0 and z, = 0 from equation 9,31a,
since M occurs only in the form M [e + 2 (y — 1)]. A number of calculations with extreme
values of B and z, have shown that the approximation 1s good in all practical cases.

Muzzle velocity
When the charge is all burnt inside the bore the method of Section 8.14 is used, the
muzzle velocity being given by the formula

v=gena !~ 528 |

As mentioned in Section 8.14, the value of ¢,” was found to be sufficiently sensitive to
T, to affect the velocity apprec;ably, in spite of its being a coefficient of B. Special tables
were therefore constructed gwmg ¢, directly in terms of M and 0, with a correction table
for z,. The correction table gives the difference between the value of ¢, when 2, = 0 and
2, = 0-1 so that linear interpolation or extrapolation can be used to allow for this effect. An
empirical relation between ¢.’, M, 6 and {, based on these tables was given in Section 8.14.

When the charge is not all burnt in the bore we use equation 8,36 in the form

& —B =&’ (1 —Bg")
where " =c 4+ (1—2)F

and ¢;" is the appropriate value at the muzzle.
It can easily be proved that at all-burnt dc”/dn = O for all values of 0, while d%"/dy? = 0

for 6 = 1.
Now 6 =1 is the usual form coefficient with which unburnt charges occur. Also ¢” only
occurs in the minor term of order B.
Hence we may assume that ¢;” is approximately equal to ¢,” and therefore to ¢,” provided
75 is nearly equal to 7, which is true in practice with unburnt charges.
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We therefore have

1 tE,—B
log H, = E‘]Og [1.3——362'1

and 7, is obtained from the table of log H.
The velocity is obtained from 8,06 and 8,08 in the form

;2 = FC»;*/Mw,

9.13. In this method the shot-start pressure for a given gun is determined from observed values
of maximum pressure with a standard propellant and the rate-of-burning constants of other
propellants are adjusted where necessary. Heat losses are allowed for by an empirical adjustment
to the calculated muzzle velocity. It is found that the correction varies from 50 to 100 f.s.
and depends mainly on the propellant size, the larger values corresponding to smaller sizes.

9.14. We have seen from the examples given here that some form of adjustment is necessary
to bring calculated values into agreement with experimental results ; this is equally true of
all systems of internal ballistics. In the simpler systems, where a number of simplifying
approximations are made, these adjustments must in part compensate for these approximations ;
but even in the more general systems in which attempts are made, as far as possible, to allow
for all known deviations from theory, adjustments are required to allow for unknown or partly
known phenomena. We shall conclude this chapter by considering some of these.

Band engraving and bore resistance

If the pressure at which the shot starts to move is known, the use of a shot-start pressure
is probably adequate. Generally, however, the initial pressure is not known and it has to
be deduced by analysing a number of experimental firings. Values so deduced may differ,
with the same gun and driving band, for different charge weights and propellants. The size-
reduction factor, used in some methods instead of shot-start pressure, is found to differ in
the same way.

The method of allowing for bore resistance by increasing the equivalent mass moved
implies the assumption that bore resistance is proportional to the pressure. We shall see
later that experimental evidence on bore resistance is inconclusive ; there is, however, a certain
amount of evidence that the resistance decreases slowly or remains nearly constant after band
engraving. 'The assumption may not, therefore, be a good approximation to the facts and
may lead to serious discrepancies when the resistance is high.

Variation of y

In most systems a mean value of y is used, the mean being calculated for a representative
proportional decrease in temperature. Actually y increases as the temperature falls, so that
in less efficient guns a lower mean value than the representative one should be assumed. The
error in maximum pressure from this cause is negligible but there may be an appreciable effect
on the muzzle velocity.

Rate-of-burning coefficient

The rate-of-burning coefficient 3 or Q is probably the most uncertain of all the data available.
In the first place, the law of burning may not be exactly linear ; a mean value of the coefhicient
must therefore be adopted. This can be deduced from closed-vessel experiments and it is
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generally desirable to have two means, one suitable for high-pressure guns, the other for low
pressures. At extremely low pressures the law departs considerably from linear, but such
pressures, fortunately, are not encountered in guns except momentarily at the beginning of
burning.

Secondly, the solid charge is nearly stationary, during the burning, at the breech end
of the gun. Owing to the pressure gradient in the bore, the pressure on the solid propellant
is somewhat higher than the mean pressure used in the ballistic equations. This effect can be
allowed for by increasing the coefficient by a factor of the form 1 + AC/w,, & being about 0-1
when C is less than w,.-

Lastly there is the effect of erosion of the charge by the flow of the hot gases over the solid
propellant. This can also be allowed for by increasing the coefficient, but little is known of
this effect in guns and it is generally neglected.

This uncertainty in the rate-of-burning coefficient is probably the chief cause of the
variations in the shot-start pressures deduced from the analysis of experimental results.

For these reasons the necessary adjustment is made to the rate-of-burning coefficient
in most systems of internal ballistics and subsidiary corrections are applied to vy, to the
calculated muzzle velocity, or to the thermodynamic efficiency, to allow for heat losses and
variations in the mean value of y. When these are made the more general systems produce
pressure-space or pressure-time curves in good agreement with results obtained from piezo-
electric measurements.



CHAPTER X
SOME SOLUTIONS FOR NON-LINEAR RATE OF BURNING

10.01. We have seen in Chapters VIII and IX that the ballistic equations with a linear law of
burning admit of solution in finite terms. So far as modern propellants are concerned, the
evidence for the linear law is fairly conclusive and the solutions obtained can be used with
confidence. Departures from the linear law do occur in the case of single-base and cool,
flashless propellants, but the divergencies are generally of such a nature that an equivalent
linear law can be used to give sufficiently accurate results.

This is indeed fortunate, since the ballistic equations with the non-linear law (equation 5,04)
— Ddfldt = Bp*

are generally intractable ; solutions have, however, been obtained with a simplified energy
equation and it is the purpose of this Chapter to give a brief account of the mathematical work
which has been done in this connection.* We shall conclude with a brief account of some
methods of obtaining numerical solutions.

10.02. The reduced ballistic equations

The ballistic equations can be reduced in a manner similar to that used in Section 8.02 ;
in fact, the substitutions 8,05 to 8,08 still hold if we replace g by g (Al/FC)!—%. The ballistic
equations then reduce to

s = (E—Bz) + 4 (y— 1) iyM 10,01
ndn/dE = M, 10,02
z=(1—f) (1 + 6f) 10,03
ndf/dg = — {* 10,04

where, for M and v we now have

AZDZ FC 2—-2%
M = FCpR%w, (E)
4 _ v AD (FC\!™=
a 1= FCp\Al

'These may be regarded as the generalised forms of M and » when o is not equal to unity.
The quantities in the reduced equations are still dimensionless.

The reason why the linear law admits of finite solution is that two variables, § and g, can
be eliminated together between 10,02 and 10,04 (with x = 1) and a simple relation between
n and f at once follows. No such simple process is possible with the non-linear law, and the
variables have to be eliminated in turn.

® For a fuller account see C. A. Clemmow, Phil. Trans. Roy. Soc. A. Vol. 227, 1928.
117



118 INTERNAL BALLISTICS

The variable n can be eliminated quite easily. Differentiating 10,01 and using 10,02

leads to
d(z + BTz) = y{dE + EdT 10,05
From 10,02 and 10,04 j—}] = — My—=
and, from 10,04 p=— jf_
Hence, df I:s df:l = M1~ 10,06

The variables z and f are simply related by 10,03 and the elimination of one of them
presents no difficulty. Of the remaining variables  appears to be the easiest to eliminate in
the general case, since a further differentiation of 10,05 leads to one linear relation between
its first and second derivatives and a second linear relation is obtained from 10,06. These
two equations can be solved for the first and second derivatives of £ and the variable can then
be eliminated by equating the one result to the derivative of the other. This leads to a non-
linear differential equation of the third order relating f (or 5) and { which is generally
intractable.

In Sections 10.03 to 10.08 we shall deal with two simplified forms of the energy equation,
10,01 ; in both we shall neglect the co-volume coefficient B and in the second we shall also neglect
the kinetic-energy term, as is done in Crow’s method with linear law (Section 9.08). Solutions
can be obtained for a general value of the form coefficient 0, zero excepted. When 0 is zero
special and simpler solutions result. We shall deal first with these special solutions and then
indicate methods for the general 0.

In Sections 10.09 to 10.15 we shall give a brief account of the use of the differential analyser
to obtain numerical solutions for the simplified energy equation and also for the complete energy
equation, with the general form function. We shall conclude the chapter with a general
step-by-step method of numerical integration.

10.03. Constant burning-surface with the co-volume coefficient neglected
The energy equation 10,05 reduces to

dz = YUdE + Ed¥ = E'—7 d(EEY) 10,07
and, since z = 1 — f, equation 10,06 becomes
di'; [ca gé:l — My—= 10,08
We choose new variables X and Y such that
g =X" LEY = (Y/M)" 10,09
wherein the values of m and n have yet to be chosen.
Then ¢ = (Y/ M)y X

and dz = aX™(—0 Y1 M- dY 10,10
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On substituting in equation 10,08 we find that the exponent of M is n (3 — 2a«) — 1. If,
therefore, we choose n = 1/(3 — 2a), M cancels out and the resulting equation is independent
thereof.

If we also choose m = 2n/(y — n) we obtain, after a little reduction,

X (Y —l)nY (dX 2

ax
XY g — T () + Ha X gy =dn(r—n)

A further slight simplification is obtained by putting
Y=Z( + n)n(y—n) 10,11
The resulting equation is

2 X7 d’X 2n(7—1)Z(§E)‘ x X _ 10,12

1+ndZ2?2 (1+n)(y—n) dzZ. —
with X = Ety—n)2n 7 — n SY+ n) M (¢ &Y)un
and n = 1/(3 — 2a)

The relation between X and Z resulting from 10,12 depends only on the propellant properties
v and « and the initial conditions ; it is independent of gun and charge dimensions and is
therefore of quite general application. For a given type of propellant the relation between
X and Z depends only on the initial conditions ; once these are determined the relation between
X and Z can be calculated by a step-by-step process, such as Runge’s, and can be tabulated.

Two cases here arise, depending on whether a finite shot-start pressure is assumed, or
whether this pressure is taken as zero in the analysis and allowed for in some other way (as,
for example, in Coppock’s method, Section 9.10).

In the first case, X, = 1 and
Zo=n(y —n) M {(1 + n)

The initial value of dX/dZ is determined by the condition that the shot velocity is initially zero.
By substitution in 10,04 we obtain

2 7 Jian) i—n gx
= Xim(y—1) I:T'*n:l [1 +ﬂ:| VA 10,13

and clearly, when v = O the initial value of dX/dZ is zero.

In the second case, X, =1 and Z, = 0. The initial value of dX/dZ is then 1, from
10,12, and 10,13 is also satisfied since Z, = 0. In this case only a single-entry table of X in
terms of Z is needed for a given propellant.

In our further development of this analysis we shall deal only with this case ; the extension
to the more general case of finite shot-start pressure, although more complicated, presents
no analytical difficulty.
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When Z; = 0 a series solution of 10,12 can be developed. By Maclaurin’s theorem,
X=14X/Z+ X" 22+ }X"Z3+ ...

where the coefficients are the initial values of successive derivatives of X with respect to Z ;
these are obtained by successive differentiation of 10,12. The result for the first four terms is,

A—m)( +mZ [, ((1—n) (T +3n) +(y—1)(7—5n)} Z
X=1+2=98Tnr—n [1“ 3G +n) (y—n)

This series is useful for checking the early stages of the calculation of X in terms of Z.

Maximum pressure
We have

BES

and ¥ is maximum when
dX X y—nX
dZ. ~ ymZ~ 2y Z

In the course of the calculation of X, dX/dZ is also computed. This equation can therefore
be solved numerically and the solution depends only on y and «, that is, on the propellant.
If the corresponding values of X and Z are X, and Z,, we have, for maximum pressure,

F2 C2 B2 g, In
= [AJ—DB”‘] G (1, %) 10,14

14+nZ 1
n(y—n) X,

where G(y, «) = I:

is a function of y and « only.

If the variation of w,// with charge weight is neglected, equation 10,14 gives a monomial
law relating maximum pressure and charge weight for the same gun and propellant, of constant
size and burning surface, in the form

P = EC2/(3—2%)

The index is 2 when « = 1 and decreases with «, rapidly at first and then more slowly,
to unity when o« = 4. The departure of the index from the value 2, as determined by
experimental firings, should therefore give an indication of departure from the linear law
of burning. Unfortunately, the variation of w,/l with C cannot generally be neglected.

All-burnt
From equation 10,10 we have
AL (e
n(y—n) 0
= I(Z)

M = Y= 4(Z")

where I(Z) is a function which can be tabulated for a given propellant from the table of X.
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The fraction of charge burnt is therefore determined for any value of Z. At all-burnt,
I1(Z,) =M~
The shot-travel to all-burnt is then

o= UE, — 1) = (X" — 1)

Velocity
From 10,13 we have

FC B 1—x FC [3 A3 D2} H(1—n)
Y="AD (FC) [FZ C? p? wl] v(z)

2 v/ i(1+n) n a—n gx
A\ (Z) = Xim(y—0 [Y_'”] [m] ﬁ 10,15

and can be tabulated for a given propellant.
After all-burnt dz = 0 and, from 10,07, ¥EY is constant and therefore equal to §, £,Y. The
energy equation then gives

=M =1—rg =1 [ LD 10,16

where

and so the muzzle velocity can be determined.

The solution in this case is thus seen to be based on four numerical tables, X (Z), I (Z),
V(Z) and G (y, «). The last is of universal application but the other three are associated
with a given propellant, that is, given y and «. An example of these tables is given in Table
10.01 for NCT. This propellant is in tubular form and therefore burns with constant or
nearly-constant burning-surface ; its rate-of-burning index is 0-8 and has the greatest divergence
from the linear law of all Service propellants ; the value of v is 1-24.

10.04. Constant burning-surface with the simplified energy equation
When the kinetic-energy term in the energy equation is neglected as well as the co-volume
coefficient, the equation reduces to

z="CE 10,17

The solution of the ballistic equations for constant burning-surface then becomes a special
case of the solution of Section 10.03 for which y = 1. It may be summarised as follows :—

Basic equation
2 XZ d*X dX
Trnaz: T Xaz =1

n=1/3—2x), X=£¢-% Z=n(l—n)Mz/l + n)

Series solution

_ (1 + n) Z2 (7+3n)Z
=1+ 2=y [ e o]
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Maximum pressure occurs when

dX X
7 =11—nz

F2C2p2w
b= Asnﬁzl!] G()

- 6 (0 = [LH 22T x -

m=2nj(1 —n) = 1/(1 — «)

All-burnt occurs when

Hence Z, =n (1 —n) M/(1 + n)
and x, = (X" — 1)
Velocity |

FCp[ A3D2l 0=
Y="AD I:Fz C? p? wl] V(2)

y/ 1(14n) n 10— Y
where \" (Z) = [1 — ?l] [m] 'EZ

10.05. General form function and energy equation with B =0
We now consider the case of the more general form function,

z=(1—=51+9)

and the energy equation with B = 0.
From 10,07 and 10,06

dz = y{d§ + Edg

3l 5]

Write Y =98y, Z=gz
where g = 40/(1 -+ )2
Then dZ. =E'—vdY

—df = dz _1+8 dZ
TV 07 —40z) © 40 AA1—2)

10,03

10,18

10,19

10,20
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Eliminating f between 10,06 and 10,20 vields
(1—2Z)@E" + « & T/T) — 4 & = (M/4bg) g1—2*

where ' and "’ denote first and second derivatives with respect to Z.
From 10,19 (y—1DEE=Y"Y
Hence ' =Y"Y"+2—v)Y'/(yx—1DY

and from 10,18,
CR=YN—y&E =Y —yY'/(y—1Y
Hence, finally, :

Yur YH Y' Y" 2—2n
(I—Z)I:YW-F(?I—Z)?#-Q“Y-:I‘—%:% 10,21
where n = H‘%__;—la) and Q= Lﬁ%‘#

This equation can be integrated numerically to yield a series of values of Y, Y’ and Y”
in terms of Z, for a given propellant (given # and «) and a given value of Q, representing the
loading conditions.

The initial conditions are

Yo =14% Zy =gz, = q¥,
and, from 10,19, Y’ = 1 and Y”” = 0, if a shot-start pressure is used ; if the latter is assumed
to be zero, the initial conditions are

Y, =0 Z,=0 Y =1 Y' =0

In the latter case the start of the calculation is facilitated by using the following series solution
of equation 10,21 :—

Y=Z+aDZ‘_2°‘[1+a12+...]+boz7—‘°‘|:1+...]+...

the coefficients being obtained by direct substitution :—
a,=Q/2 (2 — «)? (3 — 2a) a, =(3—2a)/2(3 — a)

by=2a2—a){3—2a—n(2— «)}/(5 — 3a)
and so on.
It will be observed that Q could be eliminated from equation 10,21 by making the

substitution
Y = XQv/?n

There is no real advantage in this, however, since Q reappears in the initial value of X'
and the calculation cannot be made independent of Q.

The shot-travel is obtained from 10,19,

EY—!' = dY/dZ
and the pressure from 10,18,
g% = YJE = Y/(¥)rer=
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The pressure is maximum when

Yy _y Y
Y  y—1Y

and this can be solved numerically from the tabulated values of Y, Y’ and Y"'.
At all-burnt, Z, = ¢
The velocity can be obtained from the energy equation in the form
7" =2M(z—CE)/(y—1)
=2M(Z —-Y/Y')(x—1)¢
Whence v =2FC(Z — Y/Y')/(y — 1) qu,

After all-burnt,
CEY = Y,/q

and the muzzle velocity is given by
v;2 =2 FCE/(y — 1w,
where E =1—Y,/g, !
10.06. A similar treatment in the case of 6 = 0 leads to the equation

an YH Y' (T - l) M (Y')Z——Zrl
_Y'W -+ (ﬂ - 2) ? + ? = Y Y21 10)22

where Y = (%Y and the independent variable is z. Sincé the latter does not occur explicitly,
the equation can be solved by treating Y’ as a function of Y ; it then reduces to the form 10,12,
which yields a gencral table for a given propellant.

It is interesting to note that the series solution of equation 10,22 with zero shot-start
pressure takes the form

T, 7 {3—2—n(2—a)}2Z
‘:“[1:4ﬁ21+ 5 —32) (4 — 2a) *]

(v — 1) Ms*=
T (3—24) 2—a)

where Z

so that MY*—** and Y’ (= £Y™') are functions of Z only, for a given propellant. This result
could also be deduced from Section 10.03.

10.07. General form function with simplified energy equation
We now consider the case of the general form function with the simplified energy equation,

z=U0 10,17
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Writing
sin? ¢ = 46z/(1 + 0)2 10,23

df = —sin ¢ dy (1 + 6)/26

we have, from 10,20,

Substituting this in 10,06 and eliminating ¥ by means of 10,17 leads to

d*X dX .
XW + 2ae—1)X P cot ¢ = N (sin )= 10,24
where X=E-= sin? ¢ = 40z/(1 + 0)?
and N=(1—a)M6=3 [$(1 + 0)]*= 10,25

This equation is suitable for numerical integration by Runge’s method, the initial conditions
being X, =1, dX/dy =0 and ¢, = 0 if the shot-start pressure is neglected, or

Yo = sin—" [2 (0Zo)¥/(1 + 0)]
when a shot-start pressure is assumed.

The pressure can be obtained from 10,17,

z (14 0)?sin? ¢
C= E = 40X /(11—

and is maximum when

dX/dy = 2 (1 — ) X cot ¢

Corresponding values of X, and ¢, can be determined once X and dX/d¢{ have been tabulated
in terms of ¢ and so &, can be obtained.

The velocity can be obtained from 10,04,
n = — {* di/df
— 0= [} (1 + 0) sin y]**~" (dX/dP)/(1 — «)
y, = sin—! [26}/(1 + 6)]

All-burnt occurs when

and the shot-trave! to all-burnt is

Tables have been constructed giving X, dX/dy, sin? ¢/X"'=® and (sin ¢)**~! in terms
of § for a series of values of « and N in the case of zero shot-start pressure.*

A series solution to equation 10,24 can be obtained by substituting

X =1+ Z ansin"y

in the equation and equating coefficients of powers of sin ¢.

® Loc. cit.’
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Writing r = 3 — 2a the equation becomes

x%—i +(@2—nX %cot U = N (sin §)>—2
and the solution takes the form.
X =1+ Nsin? { [a, + a,sin? ¢ + ...]
— N2 sin* § [by + b, sin? ¢ + . . .]
+ N3sin® ¢ [¢q + c,sin?2 ¢ +...] —...
where ag=1/2r(r + 1) a,=2r(r +2)a,/(2r + 2) (r + 3)
a, =27+ 2) (r+ 4) ayf2r + 4) (r + 5)
bo = ay/4r(3r+ 1) co=(7r + 3)bo/6r (57 + 1) (r + 1)

This Solu.tion is useful for calculating X for small values of . The X, & curve is very
flat when ¢ is small, as is evident from the fact that the lowest power of sing is 2r;
a step-by-step method of calculating would be very prolonged for small values of ¢.

10.08. The chief use of the solutions so far considered is to study the effect on gun ballistics
of departures from the linear law of burning. In this connection the solutions with the
more general energy equation as given in Sections 10.03 and 10.05 are particularly useful,
since the quantities which are neglected, namely B and shot-start pressure, are usually small.
The solutions with the more restricted energy equation are not so useful since the kinetic-energy
term is by no means small and neglecting it may lead to erroneous conclusions ; these solutions
have been included mainly for their academic interest.

10.09. Numerical solution for the simplified energy equation with the differential
analyser
We shall consider first a solution for the same conditions as in Section 10.07, namely, the

general form function and the energy equation with kinetic-energy term and co-volume
coefficient neglected.*

Substituting for { from 10,17 in 10,06 we obtain

d [2* dE L2
7l=5] M= 0%
As in Section 10.07 we write X = £!=* and introducing a new variable F such that
dF = — z—a df 10,27
e
we obtain X gF—}: = (1 — a) Mz . 10,28

and z may be expressed as a function of F by means of 10,27 and 10,03.

* The account given in this and the following section is taken from Ministry of Supply Monograph No. 17.502—
Differential Analyser by Prof. D. R. Hartree ; for further information concerning the machine reference should
be made to this paper or to J. Crank’s book, The Differential Analyser (1947).
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For reasons connected with this evaluation of z it is convenient to work in terms of the
quantity

1—u
G=(—a) I:que_l—e (1+ 0)*F 10,29
as independent variable.
Equation 10,28 then becomes
2
X% = Kz 10,30
1467 1 M
where K= —lé-—l-:l TF o= i—a 10,31

The relation between 2z and G can best be found by numerical process (see Section 10.10)
and is independent of K ; indeed the relation between 6z/(1 + 0)* and G is independent of
both K and 6, and is a function of the index « only. In the evaluation of solutions of 10,30,
2 can be regarded as a known function of G.

This equation can be handled by the analyser in the form

aZ = ~l‘(}( + a)dZ — J.sz
10,32
X = [KzdG

where a is a constant.
This requires two integrators and one input table for setting in fsz as a function of G.

For the first equation a regenerative connection is required of the type described by Amble

and Michel.*

An alternative set-up is given by writing X = exp Y so that Y = (1 — «) In §
Then the equation becomes

32; + j—(Y.,:dY = J.exp (InK2—2Y)dG 10,33

This is convenient as K is supplied as an initial displacement to the integrator which
generates the exponential and no gear train is necessary to produce it. Five integrators and
one input table are required.

When shot-start pressure is neglected a difficulty arises owing to the flatness of the (X, G)
curve initially. This can be overcome by starting with a series solution, but this is troublesome.
In practice an iterative process is found to be more satisfactory.

Let X,, X;, X, . . . be a sequence of functions related by

dX, K=z
dG* X,

with X, = 1 and dX,/dG = 0 when G = 0. Then from any function X, (preferably as good
an approximation to the solution of 10,30 as may be available) it is possible to evaluate

® O. Amble. On a principle of connection for Bush intergrators. J.Sc.Inst. Dec. 1946.
J. G. L. Michel. Extensions in differential analyser technigue. J.Sc.Inst. QOct. 1948,
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X,, X, . .. in succession by numerical means and so converge to X. In this way a value of
G can be obtained corresponding to a value of X appreciably different from unity, from which
a start can be made.

10.10. The relation between =z and G.
When 6 =0, F = 2'~%/(1 — «) and equation 10,28 is used for the numerical solution.
When 6>0, write

w=[0(1—f)(1 + 8)]'—= 10,34
Then G = f "1 — w0 gy 10,35

0
and z=[(1 4 0)%/0] [1 — w'!!—¥] g'(i— 10,36

These equations give the relation between 2 and G in parametric form. The integral
in 10,35 is evaluated numerically and the required numerical relation follows.
When 6 < 0 the appropriate substitution, in place of 10,34 is

w=[—06(—/[+ 6]
Then G — f : 1+ wi;n-—m]—a duw
and z=[—(1+ 0)2/0] [1 4 w'(1—®]g!/0—x)
10.11. Numerical solution of the general equations with the Differential Analyser*

To put the equations in a suitable form for use with the machine, we make the following
substitutions :—

{=PB E=XB, 3=VM! dX =VdT 10,37

Equations 10,01 to 10,04 then become
=P (X—2)+4(y—1)V?

dV/dT =P
a=(1—£)(1+6)
—dfjdT = M—} Bi—* p*

These are applied to the machine in the following form : —

=£U(x_z+a)dp+fpd(x—z)—(z—Y)] 10,38
v = [rar 10,39
X = [var 10,40

® The method described in this section is substantially that which was used in the Cambridge Mathematical
Laboratory.
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Y=}(y—DV 10,41
fo—f= [M-iB=peaT 10,42
1 —z= f(l — 6 4 20f) df 10,43

For the first equation, with Amble’s regenerative connections, two integrators are needed ;
the remaining equations require one integrator each, and in addition, an input table of
M—# B—* P% is required as a function of P, for equation 10,42.

For the general case, therefore, seven integrators and one input table are required ; when
0 = O the last integrator is not needed and the number is reduced by one.

The initial values are : —

Xo=1/B P,=7¢,B Zo = Lo/(1 + BZy)
V,=0 Y, =0 T, =0

The quantities T, X, V, P and (X — 2) are recorded on counters and f is read from the
last integrator.
The elements are finally obtained by calculation as follows :—

x=1(BX —1)
p = PFC/BAI

v = V (FCfuw,)!

t = TBI (w,/FC)}

10.12. The transformation of the ballistic equations considered in the last section has the serious
drawback that the accuracy of the ultimate values of x and p depends on the accuracy of B.
Now B contains the factor (b — 1/3) which is small and cannot be determined with great
accuracy ; it follows that the ultimate values of x and p (and ¢, which is less important) do not
attain the accuracy which would be justified by the machine.

To overcome this difficulty and also to avoid an input table or associated gearing dependent
on the particular gun-loading conditions, an alternative method may be employed. This is
considered in the following sections. Two cases arise ; one is the special case when 6 = 0 ;
the other is the more general case of 6 not zero.

10.13. Special case, 6 =0
The following substitutions are made in equations 10,01 to 10,04 :—

{=P/K £ =XK 7 = VK==
10,44
B=BK dX=VdT

where K% = M
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The equations then reduce to
#=P (X —B2)+}(y—1) V2
dv/dT =P
dz/dT = P=

and are applied to the machine in a form similar to that given in Section 10.11. The only
differences are that X — B’z is used instead of X — z and the input table for the last integrator
is now P* as a function of P, which is independent of the loading conditions.

The conversion of 2z to B’z may be effected by means of an integrator with a constant
displacement, or, since B’ is a small quantity, it may be done by means of approximate gearing.

The initial values are
X, =1/K P, = K¢, Ry = Co/(l + BT,)

V,=0 T,=0
and the elements are finally obtained by calculation as follows :—
x=I1(KX—1)
» — PFC/KA!

v =V (FC/w,)t
t = TKI (w,/FC)t

10.14. General case, 0 not zero
The following substitutions are made :—
f=l1+0+6—1/260 =z-2jg I=PK
¢ = XK/q n=4%V( 4+ 6) KI* B = B'K
dX =VdT 10,45

where
g = 40/(1 + 6)* and K>2* — M/6

The equations reduce to
Z=P(X—BZ)+4(y—1)V

dvjdT - P
Z=1—(f)
— df'[dT = P*

Except for the small coefficient B’ these equations are free from the loading conditions
and the form coefficient ; they are, therefore, particularly suitable for a semi-permanent set-up
on the machine for a given propellant. They are applied to the machine in a form similar
to that given in Section 10.11 ; the arrangement is indicated schematically in Fig. 10.01.
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The initial values are
X, = ¢/K P, = Kg, Z, = qu‘f(l + BZ) Vo = 0 fo’ = (1 — Z,)*

All-burnt occurs when Z = gq.
The elements are obtained by calculation from the out-put of the machine as follows *—

x=1[(XK/jg—1)
p = PFC/KA!

v =V (FC/w, ¢)}

t = TKI (w,/FCq)}

10.15. After all-burnt
After all-burnt equations 8,45 and 8,46 hold and numerical values can be obtained, once
§, and %, are known, by direct calculation ; the differential analyser is not, therefore, needed.

10.16. Step-by-step numerical solution

The ballistic equations 10,01 to 10,04 can be solved numerically by a step-by-step process
and it has been found from experience that the most convenient independent variable for this
purpose is f. Sufficiently accurate results are obtained by working in steps of 0-05 in f up
to maximum pressure and 0-10 thereafter.

With this process it is possible, if desired, to introduce a resistance term into equation
10,02. The equation then becomes

ndn/dg, = M (T —p) 10,46
where p = RAJ/FC

and R is the resistance to the motion of the projectile per unit cross-sectional area of the bore.
Equation 10,01 then becomes

&=L (E— Bz) + (v — 1) [ 73/M + fodg] 10,47

Let suffix ; denote values of variables at the beginning of a step and suffix ,, values at the
end of the step. Let A denote the difference between values at the end and the beginning of
a step and let suffix » denote the arithmetic mearn in the step, so that, for example,

An =9, —m

Nm =% (02 + )
From 10,46 and 10,04,

dn=—M({—p) T7*df

and in the small interval Af this becomes

An=—M [c,,.l—* — om ..r*“] Af 10,48



SOME SOLUTIONS FOR NON-LINEAR LAW OF BURNIN® 133

Equation 10,46 similarly leads to
AE = 2, An/M (Em — om) 10,49

The process consists in estimating AZ and so obtaining a tentative value of {m from
Cm = cl + %AC

Tentative values of Ay and A% and, therefore, of v, and &, are obtained from 10,48 and
10,49. The value of z, is obtained direct from 10,03 since f, is known. Then, from 10,47,

o s (= D2 + Jo d)
e &, — Bz,

and a value of U, is determined. Thence a more accurate value of AL is obtained and the
tentative values are corrected. The process is repeated as necessary until the estimated and
calculated values of AT agree ; the step is then solved.

A good estimate of AY is given by

av=—[20 + 1— 86—t~ ] arE,

which is obtained by differentiating 10,47 with respect to f and neglecting B and p. With
this estimate it is found, in practice, that only small corrections are needed to obtain complete
agreement.

The integral fpd¥, is obtained, of course, in the form Xp. Af where the summation covers
all previous steps and includes the step in process of calculation.

The time from beginning to end of a step is given by

D / Al \* AE
tz_tl:ﬁ(f‘f) ""J— 10,50

and the velocity, pressure and shot-travel are obtained from

()

TV =

AD \FC
p = LFC/Al
x=1(—1)

The calculation ends at all-burnt, when f = 0 ; after this, values of { and % can be
obtained in terms of £ from

CE—B)Y =¢, (&,
and n? = 2M [{1 — ¢ (& — B)}/(y — 1) — fpdZ]

B)Y

where suffix , denotes values at all-burnt.

This method can be used for any value of « and it has sometimes been found to be more
convenient than the method given in Chapter VIII for calculating the pressure-space and
pressure-time curves when a = 1.



CHAPTER XI
SOME APPROXIMATIONS

11.01. This chapter contains a number of approximations which are sometimes used for the
solution of special problems. Of these, the first two, dealing respectively with the effect of
variations in the temperature of the propellant charge on muzzle velocity, and with composite
charges, derive directly from the general treatment given in Chapter VIII. The next section
contains an empirical method for estimating the effects of small variations in the loading
conditions. Subsequent sections deal with a method for estimating the intermediate charges
of howitzers and a purely empirical method of internal ballistic calculations ; the chapter
closes with a discussion of the results which may be obtained by applying the principles of
similarity to internal ballistic conditions.

11.02. Effect of charge-temperature variations on muzzle velocity

The variation in muzzle velocity due to a change in the temperature of the charge is required
in the process of computing a range table. It is a quantity that is not easily determined directly
by experiment owing to its smallness for ordinary variations in temperature ; the variation,
moreover, is not exactly proportional to the temperature change when the latter is large, so
firing at extremes of charge temperature, although giving a measurable difference, does not
yield the figure required exactly. Recourse must therefore be had to calculation.

We have seen in Section 5.10 that variation in the temperature of the propellant affects
both the rate of burning f and the force constant F ; for 10° F. variation the effect on the former
is of the order of 2 per cent. or less and on the latter 0-2 per cent. or less ; representative figures
for a number of propellants are given in Table 5.01.

As we are dealing with a small quantity we may approximate when other small quantities
occur and we shall also assume a linear law of burning.

Denoting by & the variation of a quantity due to 10°F. variation in charge temperature,
we have, from equation 8,08

M _ _5F_ 28
M F B
and, from equation 8,48,

From equation 8,47, we have

1 —E=9®(E,— B)—Y

Hence oE oD
T1—E O©
Neglecting the co-volume effect as being of second order, this may be written
SE__ 30
- 1—E o

From Section 8.14 or Table 8.06

1/0'=1—(y—1)M1 + Gy
134
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The effect of the variation in F on {, (=Alp,/FC) is also second-order and therefore
I and G are independent of charge temperature, to the order retained.

For our present purpose y can be represented sufficiently accurately by

y=1—[1—2(r—1)MF
Hence,

3OY(@) = (y — 1) [I — 4G {1 — 2 (y — 1) M}] M

The second term in the square brackets is usually negligible.
Hence finally,

e, F L UMO—B) 0 [1_4G {12t M) | 397

vy 2F E 2F ' B
and, when G is negligible,
dv; 8F  (1—E)(®—1)[dF a8
o 2F T E Eﬁ*?] 1.0

gives the proportional variation in muzzle velocity in terms of the proportional variations in
F and {8 due to a given variation in charge temperature.

11.03. Composite charges

It is necessary, with some howitzer equipments, to use a smaller size of propellant, or a
mixture of two sizes, for the lowest charge, to ensure that the charge is all burnt before the
projectile reaches the muzzle. Higher charges are made up by adding portions containing
propellant of the larger size only, so that a certain quantity of the smaller size is present in all
the charges.

The ballistic problem of composite charges is solved by obtaining an approximation to
the form function of the same type as 8,03. We shall first obtain an accurate expression for z
and then indicate the method of approximating to it.

Let D be the size of the main charge and D/n that of the smaller size ; # is therefore greater
than unity ; in practice it is usually about 2. Let C be the total charge weight and let AC be
the weight of the portion of smaller size. During the first part of the burning both sizes will
burn together until D/n has been burnt off the smallest grain dimension. At this point the
smaller size is completely burnt and, if f represents the fraction remaining of the larger size,

fm=1—1/n
where suffix » is used to denote this point.

Let f’ denote the fraction remaining of the smaller size. At any moment during the first
stage of the burning the same thickness is burnt off both sizes, hence

D(1—f)=D( —f)n 11,02
The form function during this stage is
z=(1—0NA—fHA+6H+2r1A—f)(1+ 6% 11,03

where 6 and 6’ are the form coefhcients of the larger and smaller sizes respectively. (Usually
the same shape is used for both ; 8’ is then equal to 6).
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Eliminating f’ between 11,02 and 11,03 leads to
g =(1—f) (k+ qf) 11,04
where k=1+x(n—1)(1 —nb)
g=0—xr(0—n20")
After the smaller size is all burnt, the form function becomes

z=(1=2N0A—=H0+06)+2
=1—(1—01—Nf—0(1—Nf? 11,05

The expressions 11,04 and 11,05 give the true value of z in the two stages ; at the
intermediate point,

Zm=[14+ {0+ A(m— 0)}{1— 1/n}]/n 11,06

11.04. We now approximate by assuming a form function

e =(1—f) (1 + 0f)
and choose a suitable value of 6..

It will be seen at once that the approximation agrees with the true function at the beginning
and end of the burning. A fairly good approximation throughout can be obtained by ensuring
agreement at the intermediate point. From 11,06, it is evident that this condition is satisfied if

B =06+ na(n—10) 11,07
The error of this approximation in the first stage is

Al —nd)(1 —f)(nf —n + 1)

which has a maximum value A (1 — n0’)/4n
In the second stage the error is

M(rn—1— nf)

which has a maximum value A (n — 1)?/4n

In practice n is about 2 and A is never more than } ; it is generally much smaller. The
approximation is therefore good.

When 0’> 1/n the approximation slightly under-estimates the true form function in the
first stage and slightly over-estimates it in the second stage.

When 0’ <1/n the approximation over-estimates the form function in both stages. In
this case an even better approximation is obtained by assuming

Bcze—i‘ l(f'—-e)

where r is somewhat less than #n. The curve of the approximate form function will then intersect
the curve of the true function in the second stage at a point between f = 1 — 1/# and zero.
The maximum error between this point and f =0 is A\ (r — 1)?/4r ; the error at the point
f=1—1/nis of opposite sign and has the value A (1 — 1/n) (1 — r/n).
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The curve of the approximate function may or may not intersect the curve of the true
function in the first stage. Whether it does or not, the error throughout this stage is less than
thatat f =1 — 1/n.

The best approximation is obtained by equating the above-mentioned errors in the second

stage.
Then
r—1)2=4r(1—1/n) (1 —r/n)
=4(r— 1) (1 —r/n) + 4 (1 — r/n)?
Hence [r—1—2(0—7r/n)]? =8 (1 —r/n)?
which leads to r = n(i—; i—\/Zz\)/nZ

When 7 1s about 2, this is practically r = 0-85 n.
Then we have, finally,

=0+ 2 (0-85 7 — ) 11,08

When n = 2 the maximum error of the approximation is ‘075\ and errors of the same order
occur when 7 lies between 1-5 and 2-5.

The ballistics of the composite charge are now calculated by any of the methods of Chapters
VIII to X using this approximate form coefficient.

It may happen that 6. is greater than unity, particularly if the larger size is in cord form.
This would mean that the approximation to =z reaches unity and exceeds it before f = 0.
Although this is physically impossible the solution is not thereby vitiated since the approximate
z returns to unity at f = 0. When it does occur the excess of the approximate z above unity
is always very small.

11.05. Monomial formulae for variations

If one only of the loading conditions in a given gun (for example, the weight of propellant
charge) be changed, and the corresponding change in ballistics (for example, the maximum
pressure, or muzzle velocity) be measured or calculated, and if the values of the ballistics be
plotted against the variable loading condition, both on logarithmic scales, it will frequently
be found that the points lie approximately on a straight line, over a considerable range of
variation. This indicates that the relation between cause and ballistic effect can be expressed
approximately by an expression of the form

y = Ax" 11,09

If the interest is centred on the effect 3y of a change dx in loading conditions, the
differential form of this equation is

Syly = ndx/x 11,10

This property is employed in a method, described in Section 11.06, which is sometimes
used for adjusting the weight of intermediate charges in howitzers when firings have been
carried out with a high and low charge weight of the same size.
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Numerous attempts have been made to determine mean values of n which are applicable
to all guns and are sufficiently accurate to determine the effects on ballistics of small changes
in the loading conditions ; 1t must be emphasized, however, that the value of n which is
applicable to a given gun may be quite seriously different from the mean value, and that any
results obtained by the use of any such mean value must be checked, preferably by calculating
the differences ab tnitio in the particular case, if a reliable numerical value of the effect is required.

One such set of indices, for use in the estimation of small variations, is due to Messrs.
Vickers-Armstrongs Ltd. and is given in the following table :—

MoNoMIAL VARIATIONS

Percentage Percentage
One per cent. increase in i— vag‘ﬁ’;z’?em V:Imw
velocity pressure
Mass of shell. MD., MDT., NCT. — 04 + 06
Mass of charge. MD. + 0-6 + 16
MDT. + 0-7 + 18
NCT. + 06 + 16
Chamber capacity. MD. — 025 —1-15
MDT. —0-25 — 1-00
NCT. —0-25 —1-10
Shot travel. MD., MDT., NCT. + 02 0
Diameter of cord. MD. —0-15 —0-85
Thickness of annulus of tube. MDT., —0-3 —1-40)
NCT.
Mass of shell at constant pressure — 06 0
(varying charge)

Anpother set, which is attributed to Pidduck, was used in the Proof and Experimental
Establishment for some 30 years for correcting charge-determination firings when the expected
results were not exactly achieved ; this set is as follows :—

MONOMIAL VARIATIONS (FOR PROPELLANT PROOF)

Percentage change in Percentage change in
charge weight required | maximum pressure due
Propellant to give one per cent. | to one per cent. change
change in M.V. in charge weight.
(3C C)/(8VIV) (3P/P)/(3C/C)
MD. 1-428 1-69
MDT. 10 2:0
NCT. 1-67 143
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During the Second World War doubts were cast on the reliability of these figures,
especially when they were applied to new types of propellant, of which the ballistics were not
well known and the corrections were therefore sometimes large ; as a consequence, mean
values of the index are no longer used, but increments are calculated by the standard internal
ballistic methods for each individual gun and charge.

Indices corresponding to incremental variations which had been calculated by standard

methods for a number of guns and propellants have recently been re-examined with the following
results :—

No. of
Propellant cases (8C/CH(BV/V) (8P/P)/(8C/C)
examined
Mean M.D. Spread Mean M.D. Spread

WM. 12 1-54 0-16 1-33 to 1-81 1-79 0-23 1:37 to 2-23
NH. (Multi-tube) 10 1-56 0-13 1-30 to 1-88 1-70 0-17 1-44 to 2-02
WMT. 2 1:20 0-07 1-14 to 1-27 2-49 0-20 229t02-69
Flashless 3 121 0-05 1-14to 1-28 2-57 0-10 2-48t0 2-71

(slotted tube)

These figures give some indication that values for propellants in single-tube or slotted-tube
form are materially different from those for other shapes ; they also indicate the extent of the
error which can arise from the use of mean values for the index.

11.06. Interpolation of adjusted charge weights for howitzers

An application of the monomial approximation to the relation between charge weight
and velocity is used to calculate the adjusted charge weights for intermediate charges of howitzers
when the ballistics for two non-adjacent charges of a lot of the same nature and size of propellant
have been determined at Cordite Proof in the normal manner (see Chapter XIV) ; the method
can only be applied when the charge weights for normal propellant of the same nature and size
(known for this purpose as the basic charge weights) are well determined for the velocities of
adjustment of all the charges concerned.

It is assumed that the adjustments to charge weights are small fractions of the charge
weights and that they can be deduced from a relation of the form

logC=Nlogv—A 11,11

where C is the charge weight corresponding to the velocity of adjustment » and N and A are
constants.

If C; and C, are the non-adjacent basic charge weights corresponding to the velocities of
adjustment v; and v,

N = log (C;/C,)/log (vs/v,) 11,12

and the necessary adjustments to the lot charges, AC, and AC, are given by

where Av, and Av, are the divergencies of the lot velocities from the velocities of adjustment
for the same charge weights C, and C,.
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This assumes that the value of N for the lot is the same as that for the standard propellant ;

the error involved is probably less than that made in the original assumption that equation
11,11 holds.

For the purpose of determining the adjustment AC, to the middle charge-weight C, we
assume that N and A for the lot differ from the standard values by AN and AA.

Then, differentiating 11,11 we have

AC/C = N (Ay/v) + AN log v — AA 11,14

The firing data imply that AC = 0 when Av = Av, and Av = Av,, and so AN and AA
are determined. Then AC, is obtained from 11,14 when Av =0 and v = v,. The result is

AC, = NG, [(Av,/v;) log (vs/v,) + (Avs/vs) log (v,/v,))/log (v,/vs) 11,15
"4
\°<°

/
e:o_\"

LoqV.

Fig. 11.01
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This adjustment 1s, of course, applied to the established charge-weight C,.

This process is illustrated diagrammatically in Fig. 11.01 in which log v is plotted against
log C. The continuous curves indicate the true 7, C relation and the dotted straight lines,
the monomial relations. It is evident that the process assumes that if the standard and the
lot depart from the monomial law, they do so in the same proportion.

As an example in the use of equations 11,11 to 11,15 we take the case of the B.L. 7-2-inch
Howitzer, for which well-established charge weights and ballistics are as follows : —

Charge Weight Muzzle Velocity
IV 23 Ib. 13 oz. 1732 f.s.

111 17 Ib. 8} oz. 1394 f.s.
IT 11 Ib. 3% oz. 1070 f.s.

At proof of a certain propellant lot the same charge weights for IV and II gave 1783 f.s.
and 1099 f.s. and we require the adjusted charge weights for all three charges.

In our notation, C, = 2381 Ib. C, = 17-51 Ib. C,=11-22b.
vy = 1732 f.s. v, = 1394 f.s. v, = 1070 f.s.
Ay, = 51 f.s. Av, = 29 f.s.

Equation 11,12 yields N = 1-566 and using 11,13 the adjustments to Charges IV and II
come to —1-10 lb. and —0-48 lb. respectively.
Equation 11,15 yields AC, = — 0-776 Ib. and the adjusted charge weights for the propellant
lot are :—
Charge IV 22-711b. = 221b. 11 oz. 6dr.

Charge III  16-73 Ib. = 16 1b. 11 oz. 11 dr.
Charge 11 1074 Ib. = 10 1b. 11 oz. 14 dr.

11.07. The Le Duc svstem

The ** Le Duc ” system of internal ballistic calculations was included in a course of lectures
given by Captain Le Duc at the ‘“ Ecole d’Application ”’ at Fontainebleau at the beginning of
the century and was published, with acknowledgements, in an article on the Theory of Recoil
in the ““ Revue d’Artillerie ” in 1904 and 1905.* The method was modified and the constants
re-determined for use with American naval propellant, and has since been used as the standard
method for the United States Navy.}

The system is almost completely empirical, deriving little support from theory : it depends
on assuming a simple algebraic relation between velocity and shot-travel which not only itself
approximates to the theoretical relation but of which the derivative is similar to the theoretical
relation between pressure and shot-travel. The accuracy of the system has recently been
examined in America and in this country} and it has been found that, for the purpose of
calculating the ballistics with one charge of the propellant for which the constants of the system
are established in a gun from the known results with another, it compares favourably with other
methods widely used in the two countries.

* J. Challeat. Theorie des affuts a deformation. Rev. d'Art. Vol. LXV. pp. 184-186.
+ P. R. Alger. The Le Duc velocity formula. US. Nav. Inst. Proc. Vol. 37, No. 138, June 1911, pp. 535-540.
G. W. Patterson. The I.e Duc ballistic formulae. US. Nav. Inst. Proc. Vol. 38, No. 143, September 1912,
pp. 885-892.
1 A. W. Goldie. A numerical comparison of British and American internal ballistic systems, ARD, Ball. Report
No. 19/46.
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The basic assumption of the Le Duc system is that the velocity-space curve for the travel
of the projectile up the bore of any given gun can be represented by the hyperbolic equation

ax
V=T 11,16

This curve, which passes through the origin, rises steeply at first, and gradually flattens out,
obviously resembles the velocity-space curve in general form, but the equation is not always
accurate,

To determine the significance of a it will be noticed that, as x tends to infinity, x/(b + x)
tends to unity, and v thus tends to a : thus a is the theoretical velocity of a projectile fired from
a gun with the given loading conditions, but of infinite length. Under these conditions, the
kinetic energy of the projectile would be } wa?/g : but from a consideration of equation 6,10,
the energy released by the burning propellant is FC/(y — 1) ; neglecting losses and equating
the two energy expressions gives :—

FC/(y — 1) = lwa?/g

i

o om (25
Y—1w]

In Alger’s discussion,* a factor is introduced containing the loading density to the power
4 (v — 1) : this is justified on the basis of a definition of the ** potential "’ of the propellant
gases as the work done in expanding to infinity from unit density ; the treatment is fallacious
in that the potential so defined is not a constant, but depends on the temperature or pressure
of the gas. The factor is however retained as it is utilised in deriving the constants used with
the system ; it does not differ greatly from unity ; with this factor, the form of the equation
found applicable to guns firing American naval pyro powder ist

a = 6823 (C/w)t (27-68 C/K)v— 11,17
with v=7/6

C and w are in lbs., K, in c.in.
For other propellants the constant term should be modified in the ratio of

{F/(x =]}
‘I'he simplified equation of motion of the projectile gives
Ap: — (w/g) v dv/dx
where p, is the pressure producing acceleration in the shot ; this, using equation 11,16 reduces to

w a?bx

=Rz Bty

® Loc. cit., p. 536.
+ Patterson, Loc. cit.
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It was found empirically that allowance could be made for pressure gradient in the bore
and for frictional and other resistance to the motion of the projectile, by introducing a factor
of 1-12: the expression for the mean gas pressure is thus :—

_1-12w a® bx
Ag  (b+x)

giving p in Ib./sq.in. when A is in sq.in. and x in ft.
At the point of maximum pressure, dp/dx is zero ; hence, differentiating logarithmically,

11,18

1 3

x, b+x1=0

or b = 2x,

Thus b is twice the shot travel to the point of maximum pressure. Also, using equation
11,18,
4-48 wa?

Again, it is assumed that the shot-travel to maximum pressure is proportional to some
function of the guickness of the propellant, to the initial air space, and to some power, positive or
negative, of the chamber volume and of the weight of the projectile ; that is :—

b =q(K,— C/3) K" w—*
=q(1 — C/3K,) Ko w—*

where ¢ is a constant depending on the composition and ballistic size of the propellant. It
has been determined experimentally* that « and k for American pyro powders are both
approximately 2/3 : hence

b = g (1 — C/8K,) (Kofw)?? 11,20

The five formulae of the system have been reduced to nomograms for rapid working.

It will be noticed that, in the five formulae which have been derived, the only one that
contains any ballistic property of the propellant other than its density is 11,20 where the
quickness is represented by ¢ ; further, the two quantities measured in routine ballistic
firings (muzzle velocity and maximum pressure) each give independent values of b or of ¢ ; these
two values will not generally be exactly the same : when ballistic estimates under different
conditions are to be based on these values, it is preferable to base velocities on the value of
b obtained from velocity and pressures on that obtained from pressure. When firing results
are available for a propellant of a given size, ¢ can be determined, and is assumed to be a constant
for that size ; when a large number of firing results with different sizes of the same propellant
are available, the values of ¢ so deduced are plotted against size ; the best curve through these
points can be used for estimating the ballistics of new sizes..

* Patterson: Loc. cit.
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11.08. Ballistic similitudes
The concepts of ballistic similitude define families of guns with the same pressure-space
and velocity-space curves, provided that the scales are suitably adjusted.

(a) GEOMETRIC SIMILARITY. We imagine two guns and their ammunition with the same
nature of propellant geometrically similar in all the respects which enter numerically into the
equations of Chapter VIII : this implies among other things that the ratio of the propellant
sizes of the two guns is equal to that of their calibres and the ratios of the weights of -
propellant and of projectiles are equal to those of the cube of the calibres. As the propellant
constants are the same in both guns, it follows (from equations 8,05 to 8,08) that the following
quantities are also the same for both guns : n/v or AD/FCB ; %/p or AJ/FC; M.

Further, if the shot-start pressure in the guns is the same, the values of {, will be the same ;
and also, at equal values of £ the term 3E correcting for heat loss (Section 8.18) will also be the
same.

Now the treatment of the internal ballistic equations given in Chapter VIII shows that, for
the same propellant constants, the values of { and 7, representing pressure and velocity,
at any given value of &, representing shot-travel in calibres, depend only on M, ¢,, and SE.
For the two guns, therefore, provided that shot-travel is expressed in calibres, the pressure-shot-
travel and velocity-shot-travel curves are the same : in particular, the two guns have the same
maximum pressure and muzzle velocity.

This property was utilised by Messrs. Krupps durmg the 1939-45 war: the firm were called
on to develop guns with calibres of 21, 28 and 80 cms. : in each case, in order to save expense
and the wear of the heavier guns, they ‘made a small scale model of the parent gun, the calibres
of the model guns being 104, 15 and 8 cms. respectively, (i.e. to linear scales of }, 1/1-87 and 1/10),
and carried out the firings for the determination of propellant size and charge weight in the model
guns. They claimed that the deduced propellant and charge gave the correct maximum pressures
and muzzle velocities in the parent guns without correction.

It can be shown that, for geometrically similar guns and ammunition, the times taken by
the shot to travel to points of equal shot-travel (expressed in calibres), and in particular the
total times of travel to the muzzle, are proportional to the calibres of the guns.

(b) pynamic sIMILARITY. We imagine two guns, with calibres d and n,d respectively, with the
same chamber capacities, and the same nature, size and weight of propellant, and examine the
conditions that the pressure-space curves for the two guns shall be the same provided that the
space is expressed in terms of volume swept by the projectile.
Using the notation of Chapter VIII, and denoting by dashes the values applicable to the
gun of which the calibre is n,d,
A" =n,A

But as K, and C are the same for both guns, then from equation 6,11, so too must be Al;
it follows that {/p is the same for both guns, and that

[' - l/nzz
For equal swept volumes, Ax,
x' = x/n}?

14wl =142/l =E

Hence, as the pressure-space curve in terms of equal swept volumes is defined by p,, &
and M, if the curves are to be the same for the two guns, M’ = M,

and



SOME APPROXIMATIONS 145

Then, from 8,08 w,’ = nt'w,
and w+3C=nt(w+1C)
whence w =n'w4+ 5Cn*—1)

For quick approximate working it is sometimes sufficiently accurate to neglect the effect
of the inertia of the propellant on the changes in ballistics, and in this case (approximately),

w =mn'w

Again, as p, and M are the same for the two guns, at equal swept volumes (or ), »n will
be the same, whence, from 8,06

v = v/n.?
Also, since at equal swept volumes x and v are both inversely proportional to n,%, we have
=t
(c) compouNDED GUNs. We imagine a bundle of 7,2 identical guns, each of calibre d, with
identical projectiles and propellant charges, and that these are fired simultaneously ; and we
further imagine the bundle of identical guns to be rebuilt into one gun, projectile and charge
so that the ballistic elements at any cross-section of the compounded gun are equal to the sum
of those of the components. It is then obvious that the relevant dimensions of the compounded
gun, in terms of those of the component guns, are
Gun : nd, n?2K, 72K, n;%A, x;
Propellant : n,2C, D
Projectile : n,%w
Denoting by dashes the values applicable to the compounded gun,
Al =K, —C/[8 = n;?Al
and =1
whence, for equal shot-travel (in inches),
g =
Also, the value of FC/Al is unchanged so that p/{ is the same.

Again AD/C is unchanged so that v/y is the same and A?2D?/Cw is unchanged so that M
is also the same.

It follows that, for the same shot-start pressure, the values of { and v in terms of £, and
of p and v in terms of x, are the same for the compounded and the component guns.
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REDUCED DIMENSIONS. It is sometimes convenient, when using these principles, to express the
essential dimensions of the gun and ammunition in terms which are either dimension-less or have
the dimensions of a density, by dividing by the appropriate power of the calibre. These are
known as reduced dimensions.

The three transformations outlined in this section can be combined and in the following
table they are summarised in their combined form. The calibre ratios n,, n, and n, refer to
geometric similarity, dynamic similarity and compounded guns respectively.

BALLISTIC SIMILITUDES

Quantity Value of Value of
(in reduced dimensions quantity in quantity in
where applicable) parent gun model gun
Calibre d nyony,nyd
Chamber capacity k= Kofd3 kfﬂ23n3
Shot travel X = x;/d anf‘n;
Projectile weight W = w/d? Wﬁ[l + C ;l _ _1__4}:]
n, 3w n,
Loading Density A =CIK, A
Propellant size j = D/d Jingny

CURRENT VARIABLES

Shot-travel x xn, ,l’nzz
Time t tn,
Pressure P P
Velocity v v/n,?

SPECIAL VALUBS

Maximum pressure -3 j 2
Muzzle Velocity U3 vs/n,?
Time to muzzle 25 tyn,

11.09. The most serious limitation to the application of these similitudes is that the pressure
and loading density in the parent and model guns must be the same. In particular, it is difficult
to ensure that the shot-start pressure is the same in both guns ; since the subsequent pressure
in a gun is somewhat sensitive to the shot-start pressure, there is danger of obtaining erroneous
results,

In spite of this, however, the similitudes can be used to deduce approximate dimensions
of a gun, giving, for the same or a modified value of w/d?® (a) the same ballistics as the parent
gun or (b) the same pressure with a modified velocity. They were, in fact, used in this way
in a semi-empirical system of internal-ballistic calculations by the Rheinmetall Borsig A.G. in
the period between the two Wars.



SOME APPROXIMATIONS

As an example of their use, we take the case of a 20-3-cm. gun which has the fc

dimensions and gives the following ballistics :—
Chamber capacity
Shot travel
Projectile weight
Charge weight
Propellant size
Muzzle velocity
Maximum pressure

70,300 c.c.
964-5 cm.
122 kg.

50 kg.

0:35 cm.
925 m.s.
3200 kg/sq. cm.

From these data we can at once deduce that a gun of calibre d cm. will give the same
ballistics with the same type of propellant provided the following dimensions obtain :(—

Chamber capacity = kd?
Shot travel = Xd
Projectile weight = Wd?
Charge weight
Propellant size =~ = jd

= 84 d3 c.c.
= 47-5d cm.
= 0-0146 4* kg.

— K,A = kAd®* = 0-0060 d° kg.

= 0-0172 d cm.

If the model gun is to have a velocity of 1100 m.s. and a w/d? value of 0-0135 (for example),

we have from the table,

925/n,2 — 1,100

o146 2 C
00146n3|:1+ 3w{

n, = 0917 ; n, = 0-935,

giving

1

1_—}] — 00135
n

2

The dimensions to give the same pressure with the same type of propellant for a gun of

d cm. calibre will be :—

Chamber capacity = kd?/n,’n, = 11-7 d* c.c.
Shot travel = Xd/n,’n, = 66 d cm.
Projectile weight = 0-0135 & kg.
Charge weight = kAd3[n,*n, = (0-0083 4° kg.
Propellant size = jd[n;n, = 0-020 d cm.



CHAPTER XII
PROJECTILE VELOCITY MEASUREMENT

12.01. A large number of methods have been developed and many used for the measurement
of projectile velocity, but here only the Boulengé Chronograph and the Photo-electric Counter
Chronometer (P.C.C.) systems are described. These are standard methods and are far more
important than any of the other methods. The Boulengé Chronograph was invented as long
ago as 1874 and it has been widely, almost universally, used since then as the standard method
for projectile velocity measurement. In the United Kingdom it is still widely used but is
giving place to the P.C.C. system which has been developed in the past 10 years by the Armament
Research Establishment of the Ministry of Supply, and in which advantage is taken of modern
electronic methods to improve accuracy and to make operation easier and less dependent upon
the skill of the operator.

Of the special problems of projectile velocity measurement, first and foremost is the
high accuracy which is demanded. This is usually specified as an accuracy of 1 part in 1000,
although higher degrees of precision are really required for studying round to round
variations in muzzle velocity and for determining the retardation of the projectile in flight.
The magnitude of the velocity, which implies the measurement of a short time interval to this
high degree of accuracy, is itself a difficulty. Other factors which have to be considered in
instrument design are the disturbing effects of blast from the gun and of ground shock. Finally,
the measurements are required to be made rapidly and as a routine operation.

Nearly all methods of measuring projectile velocity consist in measuring the time taken
by the projectile to pass between two points on the trajectory at a known distance apart, and
deducing the velocity from this distance and the measured time. Because of the magnitude
of the velocity, the tendency is to make the trajectory distance large. The velocity of the
projectile is not, however, constant on account of the retardation due to air resistance. In the
extreme case of a small projectile travelling at high velocity, the drop in velocity over a distance
of only 10 feet will be nearly 1 per cent. Since the two methods described in this chapter use
trajectory base lengths of at least 90 feet, it is clearly advisable to consider the significance of
the deduced, or observed velocity. It is found that under normal conditions and for normal
purposes the usual assumption, that the observed velocity corresponds to the velocity of the
projectile when it is equidistant from the two points on the trajectory, is justified.

12.02. The Boulengé Chronograph

The Boulengé Chronograph was invented by Le Boulengé of the Belgian Army and for
well over half a century remained the generally accepted method for the measurement of
projectile velocities. The length of this period is an indication of the merits of this simple
yet accurate instrument for measuring time intervals of about 1/10 second.

The Chronograph measures projectile velocities by measuring the time taken by the
projectile to pass between two wire screens set up in the trajectory at a known distance apart.
The wire screens form parts of electric circuits and the passage of the projectile by rupturing
the wires breaks these circuits.

The time is measured by observing the distance through which a body falls freely under
gravity in the time interval to be measured. It is not difficult to start a body falling at the
beginning of the time interval if this is defined by the breaking of an electric circuit ; the body
can be supported by an electro-magnet and dropped when the current through the magnet is

148
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interrupted. It is more difficult to determine the distance through which the body has fallen
at the end of the time interval. In the Boulengé Chronograph this difficulty is solved in an
ingenious manner ; the end of the time interval is also defined by the breaking of an electric
circuit, and the breaking of this circuit is used to drop a second body which after falling a certain
distance strikes a trigger. This trigger releases a spring-loaded knife, which springs out laterally
and makes a mark on the first body which ‘is still falling freely. The position of this mark
determines the distance through which the body has fallen in the total time interval made up
of the time interval to be measured and the time for the second body to fall and the knife
mechanism to function. This inevitable delay in making the distance recording mark can be
determined and allowed for, and is actually an advantage for it increases the sensitivity of the
method.

The sensitivity of the measurement is determined by the velocity of the body when it is
struck by the knife, since the increment in distance corresponding to an increment in time is
this time increment multiplied by the velocity. The velocity is proportional to the total time
of falling and thus a known addition to the time interval to be measured will increase the
sensitivity. In the Boulengé Chronograph the order of the time interval measured is 0-1
second and the time for the knife to function is 0-15 second ; the latter therefore increases the
sensitivity by a factor of 2-5.

12.03. In its usual form and as shown in Figure 12.01 the actual instrument consists of two
electro-magnets supported on either side of a substantial vertical pillar of brass. One magnet
is rigidly fixed near the top of the pillar ; the other can be varied in height and is normally about
11 inches lower than the first. The magnets have separate circuits, and each circuit passes
through a wire screen which is placed in the line of fire and broken by the passage of the projectile.
The screen in circuit with the upper magnet is the one nearer to the gun and is known as the
near screen. The lower magnet is in circuit with the more distant or far screen. Each magnet
supports a rod; that supported by the upper magnet is about 22 inches, and the other about
5 inches in length. They are referred to as the long and short rods respectively. On breaking
the magnet circuits the long rod has an uninterrupted descent into a deep recess in the pedestal
of the instrument ; the short rod on the other hand, after descending about 4 inches, falls
upon a trigger and releases a knife which springs out laterally to cut a notch on the long rod
while it is falling.

The pedestal on which the instrument is mounted is a solid pillar of concrete sunk well
into the ground. Contact between the pillar and the floor or walls of the building in which it
is situated is avoided so that the rods are not liable to be shaken down by any local disturbance
or vibration. The pedestal is situated at a sufficient distance from the gun position to prevent
either rod being shaken down by the ground shock caused by firing the gun.

Each rod consists of a phosphor bronze tube bearing at one end a pole piece of soft iron,
and at the other a metal bob. The centres of gravity of the rods are thus kept as low as possible.
The cuts on the long rod are taken upon a renewable sheath of plated copper tube, which is
crimped to the rod sufficiently tightly to prevent slipping.

The average velocity of the projectile between the two screens is recorded in terms of the
distance fallen by the long rod from its initial position up to the point where it is cut by the
knife. The initial position is marked by a zero cut obtained by releasing the knife by hand while
the long rod is still hanging.

If the rods are released simultaneously, as would happen were the velocity infinite, a cut
will be made about 4 inches above the zero mark, and the distance between these two cuts will
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be that fallen by the long rod while the short rod is falling and operating the knife mechanism.
This time interval can be controlled by raising or lowering the short rod magnet. It is known
as the disjunction time and a value of 0-15 second has been chosen for the graduation of measuring
scales which give a direct reading of velocity.

For reading the position of the cut on the long rod two types of scale and reader are in use.
In the older type (Figure 12.02) the scale is graduated in velocities for one given screen distance,
and in inches. It is applied to the long rod by inserting a hinged conical spigot at one end of it
into a corresponding recess formed in the bob of the rod. The more modern type of scale and
reader (Figure 12.03) can be used for a pair of rods simultaneously. It will give the usual
mid-screen, or observed, velocity, and also contains a device for correcting this approximately
to give the muzzle velocity when flat-headed projectiles are being used.

The adjustment of the instrument before use consists of positioning the short rod magnet
so that the disjunction time is exactly 0-15 second. In this time the distance fallen from rest
by the long rod is 4-345 inches. A line known as the disjunction line is circumscribed on the
long rod at this distance above zero, and the short rod magnet is raised or lowered until the
cut when both rods are released simultaneously is exactly on this line.

The device for breaking both circuits simultaneously is known as the disjunctor. This is
shown in Figure 12.04 and consists of an electro-magnet with an L-shaped pivoted armature
upon the outer arm of which are mounted two weighted spring contacts. The movement of
the outer arm of the armature is limited by a heavy stop. The circuits from the screens are
completed through these spring contacts so that when the armature is attracted by energizing
the magnet, and suddenly checked by impinging upon the stop, the spring contacts continue
to move forward breaking both circuits simultaneously. A reversing switch is provided so
that the two spring contacts can be interchanged between the near and far screen circuits,
thus checking that they do actually break simultaneously.

12.04. Accuracy of the Boulengé chronograph

The Boulengé Chronograph does not function exactly in the ideal manner described above.
The divergences are small, but are potential sources of inaccuracy. The force exerted by the
magnets upon the rods does not change instantaneously to zero when the magnet circuits are
broken, but decreases at a finite rate which depends upon the formation of eddy currents in
adjacent metal, the possible presence of shorted turns in the magnet coils and the capacity and
leakage resistance of the cables connecting the instrument to the screens. There is consequently
a short delay before the rod is released, and in the initial stage of its motion the rod is still
influenced by the decaying magnetic field and is thus not falling freely under gravity. Since
both rods are affected, errors due to this delay in the release of the rods practically cancel out ;
it is only the difference in the delay times of the two rods which matters. This difference is
minimized by adjusting the currents in the magnet coils so that the forces exerted by the two
magnets on their rods are equal.

Although it is only in the first small fraction of an inch that the rod is not falling freely,
it takes a relatively long time to fall through this distance, and it is the time during which the
rod is influenced by the decaying magnetic field which determines the magnitude of the divergence
from the assumed fall under gravity. The effect of this divergence is minimized though not
eliminated, by the fact that disjunction is carried out in terms of distance though interpreted
in terms of time. Disjunction also tends to eliminate errors due to different delay times for
the rods, though in disjunction the circuits are broken near the instrument, while in measuring
velocities they are broken at the ends of the cables. The conditions are thus not absolutely
comparable.



Fig. 12.01. Boulengé Chronograph
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Fig. 12.02. Chronometer scale, old type.
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Fig. 12.04. Disjunctor.



PROJECTILE VELOCITY MEASUREMENT 151

In addition to these instrumental sources of error which give rise mainly to systematic
errors, and to random errors due to variation in the time of operation of the knife, there are
three sources of error due to the operator. Firstly there is the adjustment of the instrument
by disjunction and setting the magnet currents ; secondly there is the positioning of the screens ;
both of these give rise to systematic errors ; finally, there is the reading of the actual velocity,
giving rise to random errors.

From the preceding remarks it will be seen that the accuracy of the Boulengé Chronograph
is dependent upon the condition of the particular installation, the adjustment of the instrument
and the skill of the operator. It is consequently difficult to give a figure for accuracy apart
from stating that for an instrument in good condition with careful and experienced operation
an accuracy approaching one part in 1000 can be achieved.

12.05. The P.C.C. system

The basic principle of the P.C.C. (Photo-electric Counter Chronometer) system is the
same as that of the Boulengé Chronograph : the time taken by the projectile to pass between
two points on the trajectory at a known distance apart is measured and the velocity is deduced
from the distance and time. But the means of recording the arrival of the projectile at the two
measuring points and of measuring the time interval while the shot is passing between them
are entirely different. In the P.C.C. system the two points on the trajectory are determined
by the optical fields of view of two photo-cell units, which take the place of the Boulengé screens.
The passage of the projectile through the field of view of one of these units obscures some of
the light from the sky entering the photocell and thus creates an electrical signal. The two
electrical signals thus produced are amplified and fed into an electronic timing device—the counter
chronometer—which measures and gives an immediate and direct indication of the time interval
between them.

The optical system of the photo-cell units consists of a lens and a slit. The slit is between
the photo-cell and the lens, and its position is such that a virtual image of it is formed at a distance
above the lens greater than that of the trajectory. This arrangement is shown diagrammatically
in Figure 12.05. The width of the slit is chosen so that the width of the virtual image is about
equal to that of the lens. In this case, as can be seen in the figure, the field of view of the
photo-cell up to the virtual image of the slit is bounded by two planes parallel to the length of
the slit and two planes diverging from the lens perpendicular to the length of the slit forming
a thin triangular laminar space. Above the image of the slit the field of view diverges in both
directions. The photo-cell unit is so placed that the plane of its field of view is at right angles
to the vertical plane containing the trajectory. The field of view is thus narrow in the direction
of the trajectory, giving a well defined measuring point, but extensive perpendicular to the
trajectory, permitting a fair amount of variation in the actual position of the trajectory relative
to the photo-cell unit.

For flat trajectories the plane of the field of view of the photo-cell units is made vertical.
For firings at elevation the same arrangement (as used with the Boulengé Chronograph), is
open to objection on account of the error introduced by any uncertainty in the angle of jump.
The magnitude of the angle of jump may be as much as 30’ of arc and the round to round
variation of the order of 5'. If 0 is the nominal angle of departure of the projectile, then the
distance along the trajectory between the measurement points is sec 0 times the horizontal
distance between the two vertical fields of view or screens. Consequently if the actual angle
of departure is 6 + A6, the fractional error in the assumed trajectory distance will be
tan® A, if A0 is measured in radians. The magnitude of this error is shown in the following
table, from which it will be seen that except at low elevations unacceptably large errors are
liable to occur.
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Fig. 12.05. Optical system of photo-electric unit, P.C.C.
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PERCENTAGE ERRORS IN ASSUMED TRAJECTORY DISTANCE

Error in Angle of Departure

Angle of

Departure 10° 20° 30° 40° 50° 60°
5 0-02 0-05 0-08 0-12 0:17 0:25
20’ 0-10 0-21 0-34 0-50 0-69 1-01

If the plane of the field of view of the photo-cell unit is oriented so as to be perpendicular
to the trajectory then errors due to uncertainty in the angle of jump are effectively eliminated.
In this case the fractional distance error is 1 —cosA6, and an uncertainty of 24° only introduces an
error of 0-1 per cent. To apply this principle strictly would, however, involve complications
in design, and in setting up the unit. These disadvantages are avoided in the compromise scheme
which has been adopted in the standard equipment. The units are designed so that the field
of view can be set up at either 15° or 35° to the vertical. These two settings enable the field
of view to be at not more than 10° from perpendicularity to the trajectory for all elevations
from 5° to 45°. Thus even in the worst case the error due to jump uncertainty (corresponding
to 10° in the above table) is acceptable.

12.06. The electric signal

The electric signal produced by the photo-cell is proportional to the amount of light which
is prevented by the projectile from entering the photo-cell. The shape of the signal is
determined by the profile of the projectile, the width of the field of view of the photo-cell unit
and the position of the trajectory in relation to the lens and the image of the slit. The simplest
case is that of a flat-nosed proof shot, which has a rectangular profile, passing over the photo-
cell unit at the level of the image of the slit. The signal increases uniformly as the flat nose
of the shot moves across the field of view, it then remains constant until the base of the shot
reaches the field of view after which it decreases uniformly until the shot is clear. This is
shown in Figure 12.06.
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Fig. 12.06. Signal shape, flat-head, Fig. 12.07. Signal shape, modified,
P.C.C. flat-head, P.C.C.

Between the image of the slit and the lens, the rays of light which normally enter the
photo-cell are more concentrated in the centre of the field of view than at the edges. If the
proof shot passes at this position, then the leading and trailing edges of the signal are modified
as shown in Figure 12.07 ; the degree of divergence from the signal shown in Figure 12.06
is dependent upon the distance of the shot below the slit image. The shot-travel in which the
signal builds up from zero to its steady maximum is, however, unaltered.
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Under these conditions, with a flat-nosed proof shot, it is the standard practice to use the
leading edge of the signal to operate the counter chronometer. The exact point on this part
of the signal at which the counter chronometer is operated depends upon the sensitivities of
the amplifiers and operating circuits and is when the amplified signal voltage reaches a certain
value. Under proper conditions the minimum operating voltage is several times less than the
maximum voltage derived from the signal, so that the counter chronometer is operated well
within the first half of the leading edge of the signal. However, it is possible for the counter
to be operated at any point during this part of the signal and thus the width of this determines
the maximum error which can arise from this part of the system. This error is most easily
interpreted as a space error and as such it is equal to the width of the field of view.

CAL FIELD OF VIEW

?

Fig. 12.08. Signal shape, pointed shell, P.C.C.

With projectiles of the normal pointed shape the signal does not reach its maximum value
until the base of the ogive has crossed the field of view. The kind of signal produced is shown
in Figure 12.08. In this case the shot-travel in which the signal is increasing, that is the
maximum space error, is equal to the length of ogive of the projectile in addition to the width
of the field of view. However, since the base of the projectile is square the duration of the
trailing edge of the signal is much less and corresponds to a shot-travel of the width of the field
of view only and if this part of the signal is used to operate the counter chronometer the accuracy
of the system is unimpaired. This mode of operation is in fact used on certain types of the
standard equipment, and is achieved at the cost of a slight additional complexity in the
amplifying and operating circuits.

The unit containing the photo-cell—the Photo-Electric Impulse Unit as it is called—is
connected to the other units of the system by a cable which may be up to 1000 yards in length.
In addition to the optical system and photo-cell, the photo-electric impulse unit contains a pre-
or head amplifier, the purpose of which is to feed the photo-electric signal into the cable at low
impedance so as to preserve its steep wave front. The function of the main amplifier—The
Impulse Amplifier—is to produce from the chosen part of the photo-electric signal an impulse
of sufficient amplitude to operate the counter chronometer.

12.07. The counter chronometer

The counter chronometer is a new type of instrument for the precise measurement of
short time intervals. Its essential operations are made electronically and its mode of operation
is basically similar to that of a stop watch of which it may be regarded the electronic analogue.
It measures time by counting the number of cycles of a standard frequency oscillator which
occur in the time interval to be measured.

Electronic counting circuits were first described by Wynn-Williams in 1932,* and since
then have been widely used either alone or in conjunction with electro-magnetically operated
counting mechanisms for counting events which occur at speeds which are beyond the range

®* Proc. Roy. Soc. A, 136, 1932, p. 312,
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of an ordinary mechanical counter (200 per second). The main application has been with
Geiger Muller counters in atomic or nuclear research. The idea of combining such an electronic
counting circuit with an oscillator to measure time was first put forward by Uffelmann of the
Research Department, Woolwich (now the Armament Research Establishment) in 1937* and
since then many workers have developed instruments based on this principle. The high
degree of accuracy of which this type of instrument is capable makes it well suited to the
measurement of projectile velocities.

The essentials of a counting circuit are that it shall have two or more states of equilibrium
which are changed by the application of a single electrical impulse ; the states being taken up
successively in regular rotation. It is also necessary for the counting circuit to indicate which
state of equilibrium it is in, so that the count may be observed.

In order to count a considerable number of events, several counting systems can be coupled
in cascade, so that each successive stage counts the number of complete cycles of the previous
one. The number of counts which a stage makes to complete its cycle is usually known as the
scale or scale factor of the stage. Theoretically, any number may be used for the scale factor,
but the most convenient would obviously be 10. The first stage would then count units, the
second tens, the third hundreds and so on. As might be expected, it is easier to design a
counting circuit with two states of equilibrium, than with ten, and the first electronic counters
operated on a scale of two. It is possible to combine four scale-of-two stages to form a single
scale-of-ten but in the standard P.C.C. equipment a scale of ten is achieved more neatly by the
combination of a scale of two with a scale of five.

In addition to the oscillator, which is running continuously, and the counting circuits, a
counter chronometer requires a switching circuit to connect and disconnect the oscillations
from the counting circuits at the appropriate instants. The switching circuit is controlled by
impulses supplied by an external source. The oscillations applied to the counting circuits
must be in the form of impulses, not as sinusoidal waves. This shaping of the output of
the oscillator is carried out by part of the switching circuit. Since both the starting and
stopping impulses may be received at any phase during one cycle of the oscillator, it will
be seen that with a perfect counter chronometer the maximum error will be within +1 period
of the oscillator, and it can be deduced that the probable error is +% period of the oscillator.t
These errors are slightly larger in practice owing to small time lags in the switching circuit,
and when long time intervals are involved the accuracy of the oscillator may have significant
effect ; this is not the case in projectile velocity measurement.

12.08. The complete P.C.C. unit

A complete set of P.C.C. equipment comprises three kinds of instrument : photo-electric
impulse units, impulse amplifiers and a counter chronometer.

* J. Seci. Inst., 15, 1938, p. 222,

+ For a given count the time interval will have begun at a time x before the first impulse counted and will have
ended at a time y after the last impulse counted, where both x and y are positive and less than unity.

The error is equal to x + y — 1.

Since all values between 0 and | are equally probable for x and y, the probable error is equal to the average
arithmetic value of x + y — 1 for all values of x and y between 0 and 1. Since x + y — 1 is negative for
x << 1 — y, the average arithmetic valueof x 4+ y — l is

1 ! 1—y
I[J (x—i—y—l)dx-l-f {l—x—y)dx:ldy
0 1—y 0

which is equal to §. The probable error of a counter chronometer is thus = } period of the oscillator.,
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P.E. impulse unit,

type P.B.

Fig. 12.09.

Fig. 12.10. P.E. impulse

unit, type E.
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Different types of photo-electric impulse unit have been designed to meet different
requirements. Two types are illustrated in Figures 12.09 and 12.10. These are Type PB,
which has been designed for proof butts work, that is for flat trajectories up to about 8 feet
above the ground, and Type E, which has been designed for firings at elevation. The optical
system of the Type E corresponds with the description given above ; in the Type PB a wider
field of view, perpendicular to the trajectory, is obtained by using four lenses and a single curved
slit. With its appropriate main amplifier, the sensitivity of the P.E. Impulse Unit, Type PB
is sufficient for recording small arms bullets which only obscure about } per cent. of the light
entering the photo-cell. The sensitivity of the P.E. Impulse Unit Type E is sufficient to record
a 3-inch calibre projectile passing at 100 feet above the unit even under rather poor skylight
conditions.

The impulse amplifier and counter chronometer are built on standard 19-inch panels for
rack mounting and are conveniently mounted together as shown in Figure 12.11. The impulse
amplifier contains two twin amplifiers, one for the start signal and one for the stop signal.
There are two pairs of controls, one for adjusting the filament currents of the pre-amplifiers
in the p.e. impulse units, the other for adjusting the overall sensitivity.

12.09. Accuracy of the P.C.C. system

The accuracy of velocity measurement by this system depends upon the accuracy of the
distance measurement and the accuracy of the time measurement. Errors in the distance
measurement are composed of errors in the assumed distance along the trajectory between the
optic axes of the two photo-electric impulse units and errors due to the finite width of the field
of view of these units. For the Type E impulse units the trajectory distance is calculated
from the measured distance between the two units, the inclination of the fields of view of the
units to the vertical, and to the trajectory, and their relative heights. The main possible sources
of error are lack of parallelism between the two fields of view, and in the measured distance
between the units. The inclination of the field of view of the impulse unit is adjusted by refer-
ence to a bubble to an accuracy of 1 minute of arc or better ; at the maximum height of the
trajectory above the unit—100 feet—this corresponds to a distance accuracy of 4 inch. The
distance between the two units is usually about 100 feet and with reasonable care can be measured
to % inch. For the type PB impulse units, the trajectory passes so near to the units that there is
little scope for error due to lack of parallelism of the two fields of view. For this type of unit
the width of the field of view is rather less than 1 inch, and this is thus the maximum error
which can be introduced by the finite width of the field of view. The probable error is very
much less—about } inch—since the magnitude of the photo-electric signal is usually several
times that required for operation and the maximum error could only arise if the sensitivity of
one amplifier was only just sufficient to operate the counter chronometer, while that of the other
was many times greater—a most unlikely occurrence. The accuracy of time measurement
has already been discussed and the maximum error shown to be 4 1 cycle of the oscillator
and the probable error 4 4 cycle. The oscillator frequency is 100 kc/s and so these errors
are + 10 microseconds and 4 3 microseconds respectively. The overall accuracy depends
upon the velocity and the distance between the two impulse units; taking as an example a velocity
of 3,300 feet per second and the standard distance between the units of 100 feet, it will be
seen that the maximum error due to time measurement is 1 part in 3000 while the maximum
distance error is 1 part in 1000. Combining these two errors the maximum error in velocity
measurement is 1 part in 750 for gross maladjustment of the amplifier sensitivities while the
probable error is about 1 part in 3000.

It should be noted that the largest errors are distance errors and are systematic ; they are
associated with the layout and adjustment of the impulse units. The errors in timing are smaller;
these are random and entirely independent of the operator’s skill.

M
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12.10. Muzzle velocity

Except for one brief reference in Section 12.03, the conversion of the observed velocity
at some distance from the muzzle to velocity at the muzzle has not yet been considered.

For most internal-ballistic purposes the muzzle velocity is obtained from firing proof-shot
horizontally into a butt. In these circumstances Siacci’s equation* can be used with
satisfactory accuracy. Itis

S(V) = S(v) + x/C

where v and V are the observed and muzzle velocities respectively in feet per second, x is the
mid-screen distance from the muzzle in feet and C is the ballistic coefficient of the shot ; S (v)
is Siacci’s space function and is given, for proof-shot, in Table VIII, Text Book of Ballistics
and Gunnery, Part I, (1938) ; it is, of course, a function of the air-resistance to the shot.
The ballistic coefficient is
C = w/td?

where w is the mass of the shot in pounds, d is the calibre in inches and 7 is the coefficient of
tenuity ; this latter coefficient represents the density of the air and depends on the barometric
pressure, the temperature and the degree of saturation ; it is tabulated in Table VIIin the above-
mentioned Text Book.

This method is based on the assumption that the only horizontal force acting on the shot
between the muzzle and the mid-screen position is the resistance of the air. Actually this
assumption is not quite justified since the propellant gases emerging from the muzzle tend
to accelerate the shot for a short distance. It has not yet been possible to measure the effect
of this acceleration and all we can state with certainty is that the muzzle velocity deduced by
the above method is slightly greater than the true muzzle velocity. The error must obviously
be small, but how small is not known.

* F. Siacci, Corso di balistica, Torino, 1888,

*M



CHAPTER XIII

CLOSED-VESSEL WORK AND THE MEASUREMENT OF PRESSURE IN
VESSEL AND GUN

13.01. Introduction

It is the purpose of the first part of the present chapter to give a brief description of the
technique of closed-vessel experiments. The theoretical aspects of burning at constant volume
have already been discussed and Sections 13.02 to 13.03 are to be regarded as supplementary
to Chapter V.

Pressures in both closed vessels and guns are comparatively large and vary rapidly with
time. Special methods of measurement have had to be devised. These are briefly described
in the later sections of this chapter.

13.02. The closed vessel

A design of closed vessel for use in routine investigations is shown in Fig. 13.01. The
vessel has been designed to operate at maximum pressures up to 18 tons/sq. in., i.e., at pressures
comparable with those obtaining in a gun.

The body is a steel cylinder threaded internally at both ends to receive closing plugs.
It is of heat-treated nickel steel and is lined with a cylinder of nickel-chrome-molybdenum
steel, the purpose of the liner being to facilitate repair in the event of damage occuring to the
obturator seatings through gas wash or crack formation. Efficient obturation at the high
pressures encountered in closed-vessel work is a formidable problem and its solution requires
a somewhat complex system of pads and washers.

Buttress threads are used on the closing plugs as such threads are less liable to seize than
V-threads. One plug carries the pressure gauge, that shown in the figure being of the piezo-
electric type described in Section 13.06. Brass rings provide gas-tight joints between the
closing plugs and the vessel bore. Two annular grooves on the external surface of the rings
reduce their bearing areas and thus tend to increase the effectiveness of the joints. It is not
necessary to screw up the plugs very tightly to ensure a perfect seal, but, even so, the rings
are compressed slightly after each round and must be replaced when the ends of the plugs make
contact with the liner.

The firing electrode is housed in the second closing plug, suitable insulation being arranged.
The borings for both this electrode and the pressure gauge are bushed so that damage due
to obturation failure may readily be rectified. The second closing plug is also fitted with a valve
for introducing an igniter gas mixture into the vessel and for releasing the combustion products
after firing.

In order to reduce sampling errors, it is, of course, desirable to use as large a propellant
charge as possible. Closed vessels are designed to withstand specified maximum pressures,
and this puts a limit to the charge weight for unit volume capacity of the vessel which can safely
be fired. Thus, for a given design pressure, the weight of the vessel is proportional to the
charge weight, and it is necessary to make a compromise between charge weight and vessel
weight.  In the design of Fig. 13.01 the chamber capacity is 700 c.c. ; with the maximum
pressure limited to 18 tons/sq.in., this permits the firing of 140-gram charges of propellants
such as SC and WM (i.e. denmty of loading = 0-2 grams/c.c.).

A long, narrow chamber is undesirable for two reasons ; firstly, it prowdes favourable
conditions for the building up of pressure pulses, and secondly, cooling is excessive. For
minimum cooling losses in a vessel of given volume the chamber should be spherical but this
would introduce various complications both in design and manufacture. In the present
design, the chamber length is twice the diameter.

160
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The absence of radial fittings permits the use of a simple water-jacket for controlling
the temperature of the vessel. The jacket consists essentially of a box made from steel plates
welded together along their edges, with holes in two opposite sides of sufficient diameter to
allow the vessel to pass through them. The jacket is fitted with drain, overflow, hot-water
and cold-water pipes and the lid is detachable so that ice may conveniently be packed round the
vessel.

13.03. Firing a round in the closed vessel

As, in general, the rate of burning of a propellant is sensitive to its initial temperature,
it is important that the closed-vessel charge should be under temperature control for some time
before it is fired. The charges are weighed out accurately, and are then stored for at least
24 hours at the temperature at which they are to be fired. The temperature of the vessel is
adjusted by running hot or cold water into the water-jacket, or by filling it with ice, depending
upon the temperature required.

The annular clearance between the firing-plug and the inner surface of the sealing-ring
is filled with thick luting or plasticine, and the clearance round the head of the firing electrode
is filled with vaseline. A short length of No. 50 S.W.G. (= -001 inch dia.) nichrome resistance
wire 1s soldered to the two firing pins, which are then protected with a weighed amount of
luting. If necessary, the valve cone and seating are cleaned. The block is then thoroughly
cleaned, and thin luting or vaseline is applied to the exposed end of the sealing-ring to make
a vacuum-tight joint when the block is screwed into the vessel.

The vessel interior is carefully cleaned, special attention being devoted to the sealing-ring
seatings. The firing-plug is then screwed into the vessel ; a ring-spanner is fitted over the
hexagonal end of the plug, and is tapped two or three times with a light hammer. Assuming
that the vessel is at the required temperature, the propellant charge is placed in the chamber,
taking care not to break the fuse-wire. The vessel is now left an hour or two in order to allow
any temperature differences to smooth out.

The gauge-plug is prepared for use by filling the annular space between the gauge and
electrode bush with vaseline, almost to the top of this cavity. A pad of luting is placed over the
top of the vaseline to provide further protection from the hot products of propellant combustion.
The clearance between the plug and the inner surface of the sealing ring is thoroughly cleaned,
and the end of the ring is smeared with vaseline or thin luting. When the vessel has reached
the required temperature the gauge-plug is screwed in and tapped home, as in the case of the
firing plug. A vacuum pump is connected to the hollow valve-spindle, and the vessel is evacuated
to a pressure of about one-third of an atmosphere. Ethylene and oxygen are then introduced
into the vessel in amounts corresponding respectively to pressures of approximately 14 and
30 cms. of mercury, and then air is allowed in to bring the pressure up to atmospheric. The

release valve is closed, the gauge- and firing-leads connected, the gauge amplifier adjusted and
the vessel is ready for firing.

13.04. Pressure measurement in closed vessel and gun

There are two distinct requirements for pressure measurement in internal ballistics.
One is to meet the requirements of gun proof, propellant proof and other routine firings for
which a measurement of the maximum pressure in the gun is sufficient. The other is for
internal-ballistic research : in this case a continuous record of the development of gas pressure
within a gun or closed vessel is desired.

The first requirement is naturally the easier of the two and is met universally by some
form of crusher gauge. In this type of gauge the gas pressure is applied by means of a piston
to a test piece of copper or other metal, contained within the body of the gauge, and the amount
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of deformation of this test piece is used as a measure of the maximum gas pressure to which
the gauge has been subjected. This type of gauge is simple in operation and consequently
well suited to routine measurements.

The second requirement is far more difficult to meet, especially as a fairly high degree of
accuracy 1s necessary if the results are to be of much use. The piezo-electric method of pressure
measurement is generally used for this purpose, to which its special qualities are well suited.
For the gun, some form of electric gauge is essential to overcome the difficulty of recoil and the
recording apparatus must be housed some distance away. A piezo-electric gauge has a very high
natural frequency and the high pressures and short times characteristic of the phenomena to
be measured represent optimum conditions for the method since these minimize its dis-
advantages of low sensitivity and susceptibility to electrical leakage.

A pressure head embodying wire-resistance strain gauges is sometimes used instead of
the piezo-electric gauge.

Pressure measurement in the closed vessel was, up to the end of 1918, performed by
recording the compression of a copper crusher and attaching to the piston a stylus which traced
out a line on smoked paper carried on a revolving drum. Although a copper crusher can
be made to give an approximate measure of the maximum pressure, it is unsuitable for continuous
recording as plastic deformation alters the character of the copper in a way which is so complex
that no estimation of the stress-strain relationship is possible. If all that is required is the
pressure-time relation it is not difficult to design a satisfactory gauge relying on the purely
elastic displacements of a spring. In closed-vessel work it is, however, usually necessary to
determine the rate of change of pressure and the amplitude of the gauge oscillation has to be
kept very small. A special spring gauge for closed vessel work has been developed and a
description of it is given in Section 13.08.

13.05. The crusher gauge

The design of the present Service crusher gauge is shown in Fig. 13.02. The gauge
consists of a short hollow steel cylinder into which 1s screwed a cap through the centre of which
a hole is carefully lapped to receive a piston of i sq. in. cross-sectional area. A specially-
prepared cylinder of copper—known as the copper—ls placed between the piston and the
bottom of the gauge, and is supported laterally by a light spring. A copper gas check is fitted

GAS CHECK

GAUGE CAP T er—t+—1

PISTON

SPRING

COPPER

CASE 7——-—---**"‘.1

Fig. 13.02. Service crusher gauge.

to the exposed end of the piston to prevent the penetration of gas to the inside of the gauge ;
it also serves to hold the piston in contact with the copper. This design of gauge is loaded
loose with the propellant charge. There is another design, with identical functioning
components, which can be screwed into a radial boring in the gun barrel.

When the gauge is subjected to pressure the copper is compressed and from the amount
of deformation, measured by a micrometer, the pressure is deduced from tables constructed
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from static pressings. It is now generally recognised that the pressure measured in this way
is about 20 per cent. below the true value, but the reason for this discrepancy is not clear.
Friction between the gas check and the gauge body has been offered as an explanation but the
replacement of the copper gas check by grease does not materially reduce the discrepancy.
The amount of compression used is quite large, at 20 tons per sq. in. pressure the reduction in
length of the copper is 45 per cent. It has been found that if much smaller compressions are
used (by reducing the area of the piston relative to the copper) the difference between static
and dynamic readings is practically eliminated. However the practical adoption of this principle
presents difficulties both in routine measurements to one ten-thousandth of an inch and in the
mass production of coppers with sufficiently uniform behaviour under the required conditions.
This latter difficulty has not been overcome.

In the United Kingdom it is the practice to use pre-compressed coppers, that 1s, coppers
which have been subjected in a static machine to a thrust corresponding to a pressure acting
on the gauge of about 4 tons per sq. in. below the expected pressure. The reason for the
adoption of this system is that by reducing the movement of the piston any effects due to the
inertia of the piston and copper are also reduced. It can be shown, however, that even with
uncompressed coppers the inertia effect is trivial under normal gun conditions of rate of pressure
rise. Nevertheless the use of pre-compressed coppers is valuable in that the performance of
each copper is checked before use ; after pre-compression the deformation of the coppers
is measured and only coppers with deformations within specified limits accepted.

The coppers are made from the purest copper commercially obtainable, at least
99-5 per cent. pure, supplied in rods about 6 ft. long and 0-32 in. diameter. These
rods are cut into lengths of approximately 0-6 in., and adjusted accurately to a weight of
0-215 oz. by grinding the ends. The pieces are then pressed in a former so that their length
is 0-5 in. and diameter 0-326 in., the tolerance on these dimensions being 0-0005 in. Different
batches, and even different rods in the same batch, vary considerably in hardness. These
differences are removed by annealing. For each batch of coppers an annealing temperature
between 500° and 650° C. is determined so that test specimens from the batch give the correct
compression according to the standard table when subjected to a load corresponding to 6 tons
per sq. in. pressure.

Generally two gauges are used per round although with the largest-calibre guns more are
employed.* Before a new gauge can be used it must go through a salting process. This process
is carried out by including the gauge in gun firings first at low pressures and later at normal
and proof pressures. The reading of the gauge is compared with accepted gauges and the
gauge itself examined. Any seizing of the piston is corrected by lapping the hole in the cap
of the gauge. When the gauge reads in agreement with accepted gauges for several rounds it
is passed for use. This salting process may take from 6 to 20 rounds.

In addition to the large systematic error already discussed, the readings of the crusher

gauge are subject to random errors. 'The probable value of thesc amounts to rather more
than 1 per cent.

13.06. The piezo-electric gauge

Certain crystals, when stressed, develop electric charges of opposite signs at the ends of
what are called electric axes. This phenomenon is called piezo-electricity and was first applied
to the measurement of explosion pressures by Sir J. J. Thomson in 1917.  Since then it has
been found particularly well-suited to the measurement of pressures in internal ballistics and
has been widely adopted for this purpose.

The practical application of this phenomenon to the measurement of pressure involves
first, the subjection of the crystal to the pressure to bc measured, and second, the measurement

*See Section 14.05
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of the electric charge developed. One of the chief sources of difficulty in this method is the
smallness of the charge to be measured ; even with the high pressures developed in internal
ballistics the charge is usually less than 0-1 micro-coulomb. The great advantages of the
method are the very high frequency of response of the crystal and the constancy of calibration,
enabling a high degree of accuracy to be attained.

The device which houses the crystal and subjects it to the pressure is usually called the
gauge. There are two types of piezo-electric gauge ; one is based on the use of quartz as the
piezo-electric substance, the other on the use of tourmaline. Quartz has three electric axes
and when hydrostatic pressure is applied to it the three pairs of charges mutually cancel out so
that the net effect is nil. In order to use the piezo-electric properties of quartz it is usual to
apply a thrust to the crystal in the direction of one of its electric axes. The pressure to be
measured must therefore be transmitted to the quartz by means of a piston, or diaphragm.
An example of this type of piezo-electric gauge is illustrated in Fig. 13.03.
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Fig. 13.03. Piezo-electric gauge (Quartz).

The tourmaline type of piezo-electric gauge has been developed and used in the United
Kingdom. It has the advantage that the crystal can be subjected to hydrostatic pressure and
* it thus avoids the potential sources of inaccuracy associated with the use of pistons for pressure
measurement. ‘The elimination of the piston leads to a very simple design of gauge ; an example
is illustrated in Fig. 13.04. In this gauge one face of a disc cut from a crystal of tourmaline is
cemented to an insulated electrode, a plate is cemented to the other face and connected to
the body of the gauge. The interior of the gauge, containing the crystal, is filled with grease
which protects the crystal from the hot ionized explosion gases and transmits the pressure
to 1it.

For pressure measurement in guns it is most convenient for the gun barrel to be bored
to receive a gauge. It is possible however, to mount piezo-electric gauges inside the cartridge
or on the face of a specially prepared vent axial and thus obtain a continuous record of pressure
against time without modifying the gun barrel in any way. Typical arrangements are
shown in Fig. 13.05.
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The piezo-electric gauge translates the variations of pressure applied to it into
exactly corresponding variations of electric charge. The variations of electric charge are
recorded by a cathode-ray oscillograph at a convenient distance away from the gun or closed
vessel, the gauge being linked to the oscillograph by an electric cable. The cathode-ray
oscillograph by itself records the variations of the voltage applied to the deflecting plates of the
cathode-ray tube. It is therefore necessary to convert the output of the gauge from one of
electric charge into one of voltage, and, further, to one of voltage of sufficient amplitude to
operate the cathode-ray tube. The first step is an easy one and is achieved by connecting a
condenser across the output of the gauge. By using a condenser of sufficiently small capacity,
the voltage generated by the charge would be high enough to operate the cathode-ray tube,
but the smallness of the charge and the amount of electrical leakage at this relatively high voltage
make this arrangement impracticable. A condenser of larger capacity is therefore used and
the resulting smaller voltage is amplified to the required level. Adjustment of the capacity
of the input condenser forms a convenient means of adjusting the input voltage to the amplifier,
so that, whatever the magnitude of the pressure, the input voltage to the amplifier can be kept
constant and the amplifier can operate at constant gain.

It is not proposed here to give any details of the amplifier, except to remark that the special
requirements are not easily met. These are that the input of the amplifier must have a very
high effective insulation so that no perceptible leakage of the piezo-electric charge can take place
while the record is being obtained, and that the amplification shall be constant for all frequencies
from O up to at least 10 Kcs. so that a faithful record is obtained.

The magnitude of the deflection ultimately recorded on the photographic film is determined
by (i) the pressure, (ii) the gauge sensitivity, (iii) the capacity of the input condenser, (iv) the
gain of the amplifier, (v) the sensitivity of the cathode-ray tube and (vi) the magnification or
reduction of the optical system. The combined effect of the last three factors is measured
by an automatic calibration which forms part of each record. By a special switching arrangement
a series of known voltages is applied to the input of the amplifier immediately before firing.
The oscillogram is thus calibrated in terms of voltage : with the appropriate values for the
input capacity and gauge sensitivity this voltage calibration is easily converted into one of
pressure. The gauge sensitivity is determined by subjecting the gauge to a known pressure
in a dead-weight press, and recording, with the same amplifier and oscillograph, the rapid release
of this pressure. The accuracy of pressure measurement obtainable by this arrangement is
rather better than 1 per cent. Fig. 13.06 1s a reproduction of a piezo-electric record of the
pressure development in a gun.
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Fig. 13.06. Typical P.E. record in gun,
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13.07. Strain-gauge pressure head

A design of pressure head embodying wire-resistance strain gauges is shown in Fig. 13.07.
The body is tubular with the end threaded to fit a hole in the wall of the gun chamber.
The annular face seats on a flat, copper, sealing washer. The piston is a good fit in the bore
of the body and transmits the gas pressure to a compression member which bears on a nut.
This puts the body tube in tension. The cross-sectional areas of the body and compression
member are the same, so that the tensile and compressive strains are equal. Two
wire-resistance strain gauges are cemented longitudinally to the compression member and
two more gauges attached to the outside of the body. The four gauges are connected electrically
to form a Wheatstone bridge, energised by a 40-volt battery.

On applying pressure to the piston the resistance of the strain-gauge elements changes,
giving an electrical output from the bridge which can be indicated on a galvanometer, or in
the case of varying pressures, may be recorded by a cathode-ray oscillograph. The sensitivity
of the complete gauge 1s about 6 milli-volts per ton per sq. in.

An extra pair of strain gauges, fixed on the outside of each body, serves to measure the
difference in pressure between two heads placed in different positions in the chamber. The
gauge is calibrated statically by the application of a dead load giving a pressure of 10 tons per
sq. 1n.
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Fig. 13.07. Strain gauge.

13.08. The spring gauge

In spite of the outstanding advantages of piezo-electric and strain gauges, spring gauges
are not entirely obsolete. They have some value in closed-vessel work as a laboratory sub-
standard and the not inconsiderable advantage that they require little specialised knowledge
to handle them.
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The low frequency of the conventional type of gauge, such as the engine indicator, is due
partly to the inefficient use of the spring material, and partly to the use of a large piston
displacement combined with a low magnification. Most of these instruments employ helical
springs in which the metal is stressed in torsion so that only the outer layers are fully stressed.

The conditions under which they are commonly used make it impossible to employ high
magnification.
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Fig. 13.08. A.R.E. spring gauge, first design.

The current principles on which a gauge of really high frequency for high-pressure work
should be designed were laid down by Petavel. Another early designer of a satisfactory gauge
was Thring. Both designs were based on a working spring member consisting of a cylindrical
steel tube loaded axially. The displacement of such a spring is small and recording is through
an optical system employing a tilting mirror giving a magnification of over 200. The design
of the Thring gauge is such that its use is confined to vessels whose walls are quite thin—its
use in practice has been almost exclusively confined to work on small-arms, for which it is
admirably suited. It is not really suitable for use with closed vessels with thick walls.

T'wo types of spring gauge, based on the principles laid down by Petavel, have been developed
by C. M. Balfour. The smaller of the two has been described by Crow and Grimshaw* who
also gave a full account of the extensive tests to which it was subjected. The gauge is

* Phil. Trans. Roy. Soc. A, Vol. 230, pp. 42-44 (1931),
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illustrated in Fig. 13.08. It will be seen that instead of the spring being compressed by the
piston, it is anchored at its inner end by the retaining plug, and the piston fits inside it so
that gas pressure stresses the spring in tension. An advantage of this design is the reliability
of the gas seal at the end of the piston.

The mirror suspension is mounted on a ring which screws on to a spigot at the outer end
of the gauge body. The mirror is held by a light ring on to the face of a rocking arm controlled
by a group of flat steel springs. This group is an example of the crossed-spring pivot commonly
used in measuring instruments of high resolution and accuracy. Like the torsion strip it acts
as an ordinary pivot but without friction or backlash. The angular displacement of the mirror
is closely proportional to the piston displacement so long as the latter is small in comparison
with the distance between the parallel springs.

This gauge has a much higher frequency than the original Petavel pattern, about 300
periods per second, but inevitably the mass of the piston is large in comparison with that of the
spring. A different lay-out was adopted for a second gauge, illustrated in Fig. 13.09, and
fully described by Balfour.* Here the spring is the only part under high stress and the push
rod can be very light. 'The natural frequency is high and, in practice, is only limited by the fact
that the main spring cannot well be less than a certain length, depending on the wall-thickness
of the vessel, and on the degree of magnification of its compression which is practicable.

MIRROR

Fig. 13.09. A.R.E. spring gauge, second design.

The most recent type of mechanical gauge is shown in Fig. 13.10. One end of the rod
screws into the piston-head which, in turn, screws into the tubular part of the gauge body.
The other end of the rod is shaped to carry and tension a flat steel spring. One end of this
spring is rigidly fixed to the rod and the other end is attached to a shackle which passes through
the end of the rod and is threaded for a nut. Thus clockwise rotation of the nut applies tension
to the spring. A second flat spring is secured to two lugs which are integral with the gauge
body. The two springs are in parallel planes but their axes are at right angles ; they are
connected by an arm holding a mirror. Pressure on the piston head compresses the tubular
part of the gauge body. This compression is transmitted through the rod to the first spring ;

* Engineering, Vol. 134, pp. 231-232 (1932),
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the motion of this spring, which is connected to the second spring by the arm, rocks the
mirror. One disadvantage of this design is that the relationship between pressure and angular
rotation of the mirror is not linear.

The calibration of these gauges has been fully described in the papers to which reference
has been made. Briefly, the method is to set up the gauge in the same way as for use in the
closed vessel and to apply a series of known fluid pressures to the piston.

Records are made on a film attached to a revolving drum, the arrangement of the camera
being quite conventional. . The only unusual feature of the recording system is a method of
obtaining a continuous time trace superimposed on the pressure record. An electrically-maintained
tuning fork carries a concave mirror on one arm which is illuminated by light from the same
slit as is used to give the main pressure trace. The reflected beam is brought to a focus on the
front of the slit-plate itself, which is formed of a stainless-steel optical flat. The whole slit-
plate is mounted in gimbals, and is set and locked in such a position that the beam of light
from the fork mirror is reflected on to the gauge mirror and thence to the drum, where it forms
a second image beside that which makes the pressure trace. Vibration of the fork causes
the image of the beam from it to trace out a sine curve on the drum, and this follows the pressure
trace throughout the whole time that the shutter is open. Usually only one side of the slit-
plate is made to reflect, so that the peaks alone of this sine curve appear on one side of the line
forming the pressure trace. An automatic relay is arranged to close the camera shutter as soon
as possible after the maximum pressure has been recorded, so keeping the record clear of all
but the essentials.

13.09. Recording of rate of pressure variation

It has been pointed out in Section 5.06 that there is considerable advantage in closed-vessel
work in obtaining a record of the time-rate of pressure change rather than a pressure-time curve.
If the output from the crystal of a piezo-electric gauge is passed through a resistance instead
of a condenser, the current flowing through the resistance at any instant during the pressure rise
is proportional to the rate of change of charge and therefore to the rate of change of pressure.

This method has been developed at the Burnside Laboratory of E.I. du Pont de Nemours
and Company in the United States. The principle is employed in this country in an apparatus
developed in the Armament Research Establishment of the Ministry of Supply in which
the rate of pressure change is recorded against the pressure. A single crystal is used with
this apparatus, half the output going to a condenser for pressure recording and the other half
to a resistance for the recording of rate of pressure variation. The signals are, of course,
amplified before they are applied to the two pairs of plates of a cathode-ray tube.



CHAPTER XIV
THE METHODS OF PROPELLANT PROOF

14.01. Objects of propellant proof

During the production of propellant of a given nature and size for a given gun, some of
the processes will be carried out simultaneously on a number of similar machines ; these
machines will not all be identical. When the demand is high, production may be proceeding
simultaneously at a number of different factories, not only in the United Kingdom but possibly
in one or more Dominions or foreign countries as well. At any given factory, or from any
given machine, the properties of the propellant will change with the progress of time, either
gradually (for example, #s the pressing dies wear), or discontinuously (for example, when the
source of supply of one of the raw materials, or some manufacturing process is changed). It
follows that there will be differences in the properties of the finished propellant, as between the
different machines in a given factory, as between different factories and with the progress of
time ; these differences in properties will be reflected in differences in the ballistics of nominally
similar samples of propellant made on different machines, at different factories, or at different
times.

The effect of differences between machines at any given factory is minimised by blending
the output from the machines, so that all the charges made up from the blended output are as
nearly as possible ballistically identical and are representative of the mean output of all the
machines. This blended output is divided, on the basis of the time of output, into lots, which
are of such a size that they can be conveniently dealt with as a unit, but which are not so large
that a material change in properties can be expected during the production of the lots. It
follows that all charges made up to the same charge weight from a given lot should have identical
properties, but differences may occur between charges made up from different lots, whether
from the same or from different factories. The size of a lot varies from 5,000 to 50,000 pounds,
largely as a matter of experience and expediency, and the number of rounds which can be filled
from one lot of propellant varies from 90 with large naval guns to more than 40,000 with a
QF 2-pr. Mark VIII gun. In an attempt to reduce the incidence and effect of lot-to-lot
variations, the Royal Navy have recently introduced super-lots of 200,000 pounds formed by
blending charges from four separate lots.

From each lot of propellant a sample is selected by the Inspection Department concerned
(CIA. or CINO.), made up into a small number of rounds and proved by firing from the
appropriate gun. The object of this propellant proof is four-fold :—

(1) To ensure, by adjustments to the charge weight used for filling, if necessary,
that the muzzle velocities realised on service with charges of any lot agree as
nearly as possible with those of any other lot, and with the muzzle velocity which
the user expects ;

(i) To ensure that the pressures set up when service charges are fired do not exceed
the limits dictated by the design of the gun and projectile ;

(ii) To act as a check on the production and to bring to light any trends or
discontinuities in quality ;
(iv) To ensure that the blending of the lot has been adequately carried out.

During the course of the proof of a lot of propellant, the muzzle velocity and maximum
pressure are measured, using the procedure described in this Chapter, for each of a series of
rounds : from these measurements are calculated, for both velocity and pressure, the
mean for the series, and the mean deviation from the mean. The propellant proof specification
lays down limits for some of these quantities, as follows : —
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(1) A maximum value for the mean deviation in muzzle velocity.
(1) A maximum and a minimum value for the mean pressure which would be
achieved by a series fired at the adjusted charge weight (see Section 14.08).
(iif) A maximum value for the pressure which would be achieved by the highest
individual round of the series if fired at the adjusted charge weight.
No limit is laid down for the mean muzzle velocity : variations in this quantity are dealt
with by adjusting the charge. (Section 14.08).
The appropriate Inspection Department also examines samples of all lots for correctness
of dimensions, density, and chemical and physical properties.

14.02. Difficulty of propellant proof

The main object of propellant proof is to obtain an accurate measure of the ballistics
(muzzle velocity, mean and maximum pressure) which will be given by a lot of cordite under
certain as yet unspecified standard conditions in a given gun. The difficulty of attaining
accuracy is due to the fact that, even with one lot of cordite, the measured ballistics vary from
round to round, from day to day, and from gun to gun : the effects of gun erosion on ballistics
may vary widely with different natures of propellant, and to a less extent from one gun to
another : and, owing to the small ratio which the weight selected for firing bears to the weight
of the propellant lot, a further error is introduced due to random sampling whereby the sample
will not be exactly representative of the whole. It follows that every step in propellant proof
is subject to error, and the method of proof adopted should be devised to reduce to a minimum
the error in the final result for a given expenditure of ammunition.

14.03. Nature of variations

Round-to-round variations of ballistics in a series are of three kinds : those which are
random and due to a large number of small random causes ; those which affect only the first
round or part of a series ; and those which are progressive through the series.

The truly random variations are due to such causes as round-to-round variations in charge
weight, in the mean size or composition of the propellant sticks or grains, in the temperature
of the charge, in the ramming, in the weight of the projectile, in the driving-band resistance,
in the use of the devices for the measurement of muzzle velocity and pressure, and in other
factors which affect the ballistics. At all firings on which propellant proof depends, precautions
are taken to reduce these causes to a minimum, but there is a minimum value for any given
combination of gun, projectile and charge below which the representative value of the mean
difference in velocity and pressure cannot be reduced : for most guns this value does not vary
materially as the gun wears until towards the end of the life of the gun, when the variations
increase, generally suddenly : when this occurs, the gun has passed the stage at which it can
be used for reliable ballistic firings.

The ballistics of the first round of a shoot, fired from a cold gun, usually differ materially
from those of the rest of the series : similarly, if, during a shoot, a change is made in the nature,
size, or sometimes even charge temperature of the propellant, the first round after the change
frequently differs in ballistics from the rest of the series. The reason for these phenomena
is not well understood. The effect is, however, removed by neglecting the ballistics of the
first round of a shoot (the warmer or conditioning round) and of the first round after a change of
nature, size, or weight of propellant (the anti-interference round).

In certain equipments, the interference effect referred to above persists for more than one
round : such cases partake more or less of the nature of variations which are progressive through
the series. In guns which are designed for a medium velocity but have in addition a low
velocity charge, the velocity of the first three or four rounds of a low velocity series fired
immediately after a full charge series from the same gun will sometimes rise progressively
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towards the representative value : examples are the lowest charge of the QF 25-pr. gun, or
the obsolete, burst-short, practice charge of the QF 3-7-inch Mark I and II. Propellant proof
in such cases presents particular difficulties but, up to the present, this has only occurred with
charges where accurate determination of ballistics is, for some reason or other, comparatively
unimportant. Where a phenomenon of this nature is expected, it may be advisable to fire
more than one warmer or anti-interference round.

The more normal type of variation, progressive throughout the series, is that due to the
wear of the gun ; with all propellants, the muzzle velocity and pressure vary progressively to
a greater or less extent throughout the life of the gun. In a shoot with a number of lots, this
effect can be compensated by so arranging the order of firing the rounds that the middle rounds
of each lot are, as far as possible, coincident.

If series with a given gun, charge and shot be fired on a number of different days (or even
sometimes on the morning and afternoon of the same day), the differences between the means
of the ballistics of the several series, corrected for the wear of the gun, are almost always greater
than can be accounted for statistically by the round-to-round variations within the series :
the causes of these occasion-to-occasion variations are quite unknown. This effect makes it
essential that any shoot in connection with propellant proof must be completed on one
occasion.

Recent trials have suggested that if a number of guns are fired on a number of occasions,
the occasion-to-occasion variations are, at least in part, common to all the guns: this
phenomenon, however, has no immediate application to the problems of propellant proof.

If series with a given charge and shot be fired from a number of nominally identical new
guns, the differences between the means of the ballistics of the several series are greater than
can be accounted for statistically by the round-to-round variations within the series. Further,
if the various guns are made by a number of different makers, the mean ballistics of the guns
tend generally to be grouped according to the gun makers. These gun-to-gun and maker-to-
maker differences are probably due to small differences in the dimensions of the ordnance or in
the surface finish of the shot seating and bore ; they tend to disappear rapidly as the guns
wear and are finally swamped by increasing gun-to-gun variations due to random differences
In wear.

The magnitudes of the different variations (round-to-round, occasion-to-occasion, and
gun-to-gun) have been reasonably well established for a wide range of guns and natures of
propellant. The combinations of these variations and their effects on the accuracy of propellant
proof are examined statistically in Chapter XV.

14.04. Methods of propellant proof

With so many possibilities of variation and consequent error, it is difficult to devise a system
of propellant proof which shall be reliable. In the United States this proof is based on the use
of a standard gun, in which samples of occasional lots are fired as a check on ballistics : this
system depends on the assumptions that the occasion-to-occasion variation is negligible, that
the wear curve of the gun is known, and that all the ammunition components associated with
the firing are either themselves standard, or cause no alteration in ballistics from those of the
standard.

In the British Service, propellant proof is based on the use of a standard lot of propellant.
The basic assumptions are that the ballistics of the standard lot do not change with the passage
of time, and that, if two or more lots are fired from the same gun on any given occasion, any
circumstance which alters the ballistics of the propellant will have the same effect on all the
lots. An analysis of proof results carried out during the last war has shown the possibility
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that this assumption may be untenable with some guns ; the variations from occasion-to-occasion
in the differences between lots are greater than can be accounted for statistically by between-
round variations : this is known as the Hymans effect. (See Section 15.11).

To reduce to a minimum the adverse effects which would follow from any discrepancy
between the facts of the case and this assumption, all conditions should be as near as practicable
to standard conditions ; for example, all cordite proof should be done at the same charge
temperature on all occasions ; the guns should be the newest available ; and the standard
should be of the same nature and size as the lots under proof.

The British procedure for propellant proof may be summarised as follows :—

(a) Select a lot of the propellant of which the chemical composition and dimensions
are satisfactory, and which is sufficiently matured to make subsequent changes in
ballistics unlikely : this lot becomes the master-standard lot.

(b) Establish the absolute ballistics of this lot by firing in a sufficient number of repre-
sentative new guns under standard conditions.

(c) Select a further lot of propellant, reliable and matured, as a current standard for
day-to-day use, and determine the ballistics of this by comparative firing against
the master standard.

(d) Determine the ballistics of the lots of propellant under proof by comparative
firings against the current standard.

14.05. Absolute ballistics. Master standardisation

By absolute ballistics of a lot of cordite we imply the means of the muzzle velocities, maximum
pressures, and their mean deviations, obtained by firing series in a number of new guns selected
to represent the average new gun, under specified standard conditions as regards charge weight,
cartridge design, method of ignition, proof shot and band design, and charge temperature :
they are determined at a specified standard E.F.C.,* usually between five and nine. The
process of determining absolute ballistics is known as master standardisation.

For large naval guns of which large numbers in a new condition are only rarely available,
and for which the gun-to-gun variation is generally small, the minimum number of guns used
is three : with medium-calibre guns six are generally used : with small-calibre guns, eight,
of which two or more should be drilled as pressure barrels.t As maker-to-maker variations may
be sensible, the guns should be spread over as many makers as possible, in order to give a
representative result.

Crusher gauges are used for measuring pressures (see Section 13.05). Guns of
up to 3-7-inch calibre inclusive take one crusher gauge ; above 3-7-inch up to 12-inch
inclusive, two ; above 12-inch, four ; the number of gauges is limited by the free space
available in the chamber. Where there are two or more charges of the same propellant size
for a given gun, pressures need only be measured with the highest charge : where there is
more than one size of propellant for a multi-charge gun, pressures should be measured for the
highest charge of each size.

Except where otherwise laid down by the ordering authority, the charge temperature
for master standardisation is 80° F. For such firings the magazine temperature needs careful
watching and charges are held at this temperature with a tolerance of 4 1° F. in the heating
chambers for the periods before firing sufficient to ensure that the propellant temperature is
uniform and correct. The following times are typical of those at present used ; they are

® E.F.C. denotes the number of equivalent full charges already fired from the gun. See Text Book of Service
Ordnance (1923), p. 153,

+ In small guns, in which there is no room for crusher gauges, pressure is measured with an external gauge
screwed into a hole specially drilled in the chamber wall (with a corresponding hole in the wall of the cartridge case).
Barrels which have been drilled for this purpose are called pressure barrels (see Section 13.05).
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varied from time to time with accumulated experience : in addition, maximum times are also
laid down, to ensure that ballistics are not unduly affected by loss of volatile matter :—

Guns Hours Howitzers Hours
BL. 14-inch and above 120 BL. 18-inch 96
BL. 13-5-inch and 12-inch 108 BL. 12-inch and 9-2-inch 54
BL. 9-2-inch and 8-inch 96 BL. 8-inch 36
BL. 7-5-inch 72 BL. 7-5-inch and below 18
BL. and QF. 6-inch* 54
BL. 5-:5-inch—QF. 3-7-inch* 36
QF. 25-pr. and below 18

Master standardisation firings are important and the greatest care is necessary for reliable
results : four independent measurements of velocity should be taken, also reliable coppers
and crusher gauges should be used. In particular, the charge design, method of ignition,
mark of proof shot and design of driving band, which are used at any standardisation, must
be used at all subsequent ballistic firings with that standard, unless it has been quite clearly
and definitely established that any change in ammunition components gives ballistics which
are identical with those of the original at all stages of wear of the gun.

It is desirable that the ballistics of standards should be as near as possible to the velocity
of adjustment (see Section 14.08 below) and that the specification charge weight at which the
lot under proof is fired should, on the average, give the velocity of adjustment. In these
circumstances the differences between the observed velocities of standard and of lots, and of
both from velocity of adjustment, will be kept to a minimum in accordance with the principle
laid down above. This will generally be ensured by making up the standard to an adjusted
charge weight based on its previous proof results, but the firing of a few preliminary rounds
tn confirm the charge weight may be desirable.

Except with granular propellants, as soon as master standardisation is completed all the
charges from the lot which are to be kept as master standards should be made up into charges
with as little delay as possible using the same charge design as was used for the master
standardisation firing ; they should be stored in air-tight containers. Granular propellants
are only made up into charges when required for firing ; the bulk propellant should be stored
in the sealed cans as provided, because there is by this means less chance of a change in ballistics
due to evaporation of volatile matter.

14.06. Current standardisation. Comparative ballistics

We have seen that the process of master standardisation requires the use of a number of
new guns, the provision of which requires special arrangements which are not always easily
practicable : it is important, therefore, to conserve master standard rounds as much as possible ;
in fact, the master standard is regarded as a reference for the future rather than as a standard
for proof of production lots. As soon as master standardisation is completed, a current standard
is made for this purpose, the ballistics of the current standard being found by reference to those
of the master standard.

The procedure for finding the ballistics of a lot with reference to a standard is as follows :—
After a preliminary series, if necessary, to find the charge weight of the lot which will give as
nearly as possible the velocity of adjustment, a series composed of the lot and the standard
is fired, round for round, in any gun of the nature in which the standard was established; this

* The quoted minimum time is doubled for QF. fixed or separate-loading ammunition.
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gun may be at any stage of wear within its cordite proof life. The standard is fired at the charge
weight, and with the charge and ignition design used at standardisation ; the lot of which the
ballistics are to be determined is fired at the charge weight determined or expected to give the
velocity of adjustment, and the charge and ignition design may or may not be the same as that
of the standard, but must be such as will eventually be used for filling. The muzzle velocities
and maximum pressures of the standard and of the lot are then meaned : the second
assumption of Section 14.04 (that any circumstance which alters the ballistics of the standard
will have the same effect on the lot) is then applied : the correction necessary to bring the
mean ballistics found with the standard to its standard ballistics is applied to the mean ballistics
found with the lot to give the comparative ballistics of the lot.

For example :

The standard ballistics of a standard lot are 1650 f.s. ; 13-5 tons/sq. in.
At a comparative firing,
The standard lot, as fired, gave 1620 f.s. ; 12-5 tons/sq. in.
The lot being proved gave 1610 f.s. ; 12-3 tons/sq. in.
Correction to bring the observed ballistics of the
standard to its standard ballistics, +30 f.s. ; 410 tons/sq. in.
Applying this correction to the ballistics of the lot as
fired, gives the comparative ballistics, 1640 f.s. ; 13-3 tons/sq. in.

Provided that the basic assumption holds, this method corrects in one operation for the
conditions and error of the day and for the wear of the gun : the only other condition is that
the gun has not passed the stage of wear at which it became inaccurate.

The propellant lot for use as a current standard is selected on the same basis as that for a
master standard ; the comparative firings against the master standard, carried out as above,
are repeated some five or six times, and meaned ; these firings need not be carried out in the
same gun. Current standards are stored in the same way as master standards.

When the current standard is becoming exhausted, a new current standard is made in
sufficient time to ensure that the new standardisation is completed before the old lot is finished.
It is advisable to include rounds from the old standard in the new current standardisation, to
provide a check on the stability of the ballistics of the former.

The process of interposing a current standardisation between master-standardisation
and proof of the lots must introduce at least a-small experimental error ; moreover, the long
life that the process of current standardisation grants to master standards provides an occasion
for the ballistics of the master standard to change with time. It has recently been proposed
that current standards should be abolished and that master standards should be used direct
for cordite proof, their ballistics being checked by firings in new guns at frequent, regular
intervals. This procedure should give increased accuracy, but will demand a large number of
new guns which may not always be available.

14.07. Propellant proof

When a sufficient number of lots of propellant of a given nature and size for a given gun
are ready for proof (usually about four for medium calibre guns ; less when the volume of
production is small), comparative firings are undertaken against the current standard. The
procedure is the same as that described for current standardisation above, except that one
round of each lot under proof is fired for each round of the standard ; the order of firing is
arranged as in Section 14.03. The charge weights of the lots under proof are selected and laid
down in the proof specification to give a muzzle velocity as near as possible to the velocity of
adjustment ; that of the current standard is, of course, that given in the Record Sheet, for
which ballistics are known. The result of cordite proof is that, for known charge weights of
the lots under proof, and within the limits of accuracy imposed by the method, the ballistics
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(muzzle velocity, pressure and their mean deviations) are known under standard conditions
(charge temperature, charge design, ignition, with proof shot and gauges), these being the
conditions under which the master-standard ballistics were obtained.

A specimen set of forms used in establishing standards and proving a lot of propellant
will be found on pages 185-189. Form I is the firing report on a typical master-standardisation
series in one gun. The results of these firings for all the guns of the master-standardisation
are collected in the Master Standardisation Record of which Form II is a specimen ; this record,
with any comments on the firing, is forwarded to the appropriate service authority for approval ;
the only comment in this case drew attention to the fact that the results agreed with expectation,
an outcome which is reflected in the good agreement between the mean muzzle velocity attained
(2450 f.s.) and the velocity of adjustment (2449 f.s.). Form III is the firing report of one
series in which a lot which had been previously selected as a current standard is fired com-
paratively against the master standard : it will be noted that this contains no reference
to the state of wear of the gun nor of the air density correction ; these are not necessary as
any correction due to either cause will be applicable to the ballistics of both lots, and will not
affect the corrected ballistics of the current standard. The results of these firings for all the
series of the current standardisation are collected in the record of which Form IV is a specimen.
Form V is a specimen firing report on the proof of a production lot of propellant, in comparison
with the current standard. It will be noticed that the charge design of the current standard
is the same as that of the master standard, as these are the data on which the master
standardisation was based, but that the charge design of the lot being proved differs as this
must be the same as that which is to be used subsequently for filling ; any difference in ballistics
due to differences in charge design is taken up by this method of correction.

14.08. Velocity of adjustment ; adjusted charges; control charts

From the user’s point of view the prime object of propellant proof is to ensure that the
muzzle velocity realised in service from charges of any lot shall differ as little as possible from
that realised by other lots, or as given by the range-table wear tables. Lots of propellant may
therefore be adjusted if required ; i.e., charges are filled to a charge weight which is
calculated, from the results of propellant proof, to give a standard velocity under standard
conditions. ‘This velocity is known as the velocity of adjustment and the standard conditions
are :—charge temperature 80° F. ; average new gun; with gauge and proof shot ; charge design
and method of ignition as used for filling. The value of the velocity of adjustment is fixed
arbitrarily, e.g. to give the highest velocity obtainable without exceeding the pressure limitations
of the gun, or otherwise.

The velocity of adjustment can be corrected for the difference of ballistics, if any, between
proof shot and shell (this difference is usually negligible at calibres above about 5 inches), for
the presence of gauges, and for the difference between the charge temperature of the master
standardisation (80° F.) and that used in the range table (60° F. for land service : 70° F. for
Naval service). The result will be the muzzle velocity to be expected in an average new gun
firing shell under range-table conditions, and is thus the origin of the range-table wear tables.

The comparative ballistics of a lot of propellant fired at the specification charge weight as
found at cordite proof will probably differ from the velocity of adjustment ; the correction to
charge weight to allow for this difference of muzzle velocity can be calculated by the method
of Section 11.05. This correction is applied to the charge weight used at proof of the lot to
give the adjusted charge of the lot which is the weight at which charges of that lot are filled.
It follows that, within the accuracy of the process of standardisation and propellant proof,
charges filled to adjusted charge weight will give the velocity of adjustment when fired with
proof shot under standard conditions. Thus the first of the three objects of propellant proof



180 INTERNAL BALLISTICS

referred to in Section 14.01 (that the muzzle velocities realised on service with charges of any
lot agree as nearly as possible with those of any other lot, and with the muzzle velocity which
the user expects) is achieved.

As the proof proceeds of a series of lots of the same nature and size of propellant from the
same factory, the adjusted charge weights are plotted on a control chart against lot number
(assumed to be consecutive). The use of control charts in guiding manufacture and in reducing
proof is described in Sections 15.07 and 15.13.

14.09. Breaks in ballistics

When a new master standard is made it is essential to fire comparative series of the new
master standard against the old ; it sometimes occurs that the ballistics of the old standard,
derived by this comparison, differ from the original master standard ballistics by more than
can be accounted for statistically by the normal errors of the processes. When this occurs, it
indicates a change in conditions ; either the ballistics of the propellant of the old master standard
lot have changed with the lapse of time, or the guns used either in the original or later master-
standardisation did not represent the average of new guns at the time, or there has been a change
in the ballistics of new guns, or some other disturbing phenomenon has taken place. The
exact cause of the discrepancy in any given case is frequently difficult to determine, and, in
the absence of evidence to the contrary, it is usually assumed either that the guns used for
one of the master standardisations did not accurately represent the average performance at
the time or that there has been a gradual change of the ballistics of the old master standard.

This occurrence is known as a break in ballistics. Breaks in ballistics may be brought to
light by firings of various natures other than a check of one master standard against another,
e.g. a sudden change in adjusted charge weights coinciding with a change in current standard
would point to a break in the master standard ballistics between two current standardisations.

The following may be quoted as an example :

B.L. 6-inch 26-cwt. How : Velocity of adjustment 1250 f.s.
Ballistics of first master standard, Lot A, when originally made 1250 f.s.
Ballistics of second master standard, Lot B 1255 f.s.
At the comparative firing in a part-worn gun, the muzzle velocities as fired were :
Lot A 1244 f.s.
Lot B 1235 f.s.

Hence, assuming that Lot B is correct as it has been the more recently master-standardised,
the comparative ballistics of Lot A is 1264 f.s. which is 14 f.s. above its master standard
ballistics.

If a Lot X had been recently proved against the first master standard, Lot A, and had given

the following results :—

As fired Corrected

f.s. f.s.
Lot A (M.S.) 1220 1250
Lot X (under proof) 1211 1241

the charge adjustment which would have been allotted to Lot X to give the velocity of
adjustment of 1250 f.s. would have been the charge equivalent of + 9 f.s.; but the actual velocity
which would have been given under standard conditions by Lot A would have been 1264 f.s.,
and the true corrected velocity of Lot X would have been 1255 f.s. and the correct charge
adjustment, the equivalent of — 5 f.s. 'Thus, adjusted charges of Lot X will give muzzle
velocities 14 f.s. above the velocity of adjustment.
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When a break in ballistics is suspected or confirmed, all firings, including especially any
check firings of the suspect standard lot, are scrutinised, and such confirmatory firings which
are considered necessary are carried out in an attempt to determine as accurately as possible
the magnitude of the break, whether its onset was gradual or sudden, and if possible the date of
its occurrence. When all available evidence has been analysed, a choice has to be made between
two courses of action :—

(a) If it is more important tactically that different lots should shoot together, rather
than shoot to the range-table wear table, the velocity of adjustment of lots proved
against the new master standard is changed by the amount of the break in
ballistics.

In the example given above, if lot X had been proved against master standard
lot B, the results (because in a comparative firing lot B fires 9 f.s. below lot A)
would have been as follows :—

As fired, f.s. Corrected, f.s.
Lot B (M.S.) 1211 1255
Lot X (under proof) 1211 1255

and the previous charge adjustment of + 9 f.s. would give the new velocity of
adjustment of 1264 f.s.

This course of action is known as maintaining ballistics. The underlying
assumption is that the ballistics of the master standard have changed gradually.
When this course is followed it is not generally necessary to pass any information
to the user.

(b) When the extent and date of onset of the break in ballistics can be exactly
established, and more particularly when, as in anti-aircraft gunnery, it is more
important tactically that lots should shoot accurately to the range-table wear table
than that they should shoot together, the velocity of adjustment is not changed.
Users should be told what lots have been incorrectly adjusted, and by how much
they are expected to shoot above or below the wear table.

14.10. Checking of standards

It is now evident that, when a break in ballistics occurs, the charges issued to the Service
are less accurate than the users have the right to expect ; it is therefore essential that all possible
checks on ballistics are imposed in order to ensure that, if a break occurs, it is detected before
it becomes serious in magnitude. Among the checks which may be applied are :

(1) Critical examination of all cordite proof results. If the ballistics either of the
standard or of the lot are unusual, the conditions must be scrutinised and, if
practicable, some firings repeated, in an attempt to trace the cause. A mistake
may have been made ; an unexpectedly large occasion-to-occasion variation
may have occurred, or there may be a break in ballistics.

(i1) Checking all standards by regular firings in new guns. These checks are carried
out not less often than annually, and more frequently with propellants which are
known to be comparatively erratic. The interpretation of the results needs care
as gun-to-gun and maker-to-maker variations may be at a maximum with some
types of new guns. It has been shown, however, that this is the least ambiguous
of the methods available for checking standards.

(iti) Control guns. A special gun can be kept for checking one nature of standard
and must be used for no other purpose. This method is only of value if the wear
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(iv)

v)

(vi)
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curve for the gun-propellant combination is well established. A probability zone
must be calculated within which the ballistics as fired should fall. This method
is used in the United States but in this country it is considered to be less reliable
and accurate than new-gun check firings.

Wear curves. The ballistics of all series fired with standards at cordite proof
are corrected for (a) the difference between the velocity of the standard and the
velocity of adjustment and (b) the difference between the pressure of the standard
and the pressure that the standard would have given had the charge been adjusted
to the velocity of adjustment. The corrected ballistics are plotted against the
number of equivalent-full-charge rounds fired. This procedure ensures that,
if there has been no abnormality, the velocity curve remains smooth through a
change in current standard ; discontinuities may, however, occur in such
circumstances in the pressure curve.

Velocity and pressure will not necessarily fall steadily as wear progresses.
In some combinations of gun and propellant the curves fall in a series of festoons :
in others, both velocity and pressure rise during the early stages of the life of
the gun.

As different propellants produce wear curves of different shapes, the curves
obtained are only of value if a propellant proof gun is used for one nature of
propellant only, and for this purpose it is most desirable to have a separate barrel
for each nature of propellant, if the gun may use more than one.

When more than one gun has been worn out at propellant proof with one
nature of propellant, a mean wear curve is obtained which is used as a standard
against which subsequent proof wear curves are compared, thus giving an idea
of the behaviour of the standard.

Comparisons between standards. If two standards of different age are maintained,
a new one being made when the first attains its expected half life, it is possible
that, if there is any drift in ballistics, this may proceed at different rates in the
two and may be detectable on the wear curve of the cordite gun.

Control charts. 'The control charts referred to in Section 14.08 may also provide
a check on the ballistics of the standard ; they are, however, not free from
ambiguity as it is impossible without outside evidence to differentiate between a
trend in the ballistics of the standard and a trend in propellant manufacture.
Useful evidence is sometimes available when the same nature and size of propellant
1s being made at two or more factories and is proved against the same standard ;
if the control chart relevant to one factory shows a trend which does not appear
on the other, it is probable that production is changing ; if, however, both control
charts have the same trend, it is probably the standard that is changing.

(vii) Closed-vessel tests. At many checks of a standard a sample is taken and tested

in a closed vessel for force constant and rate of burning (or quickness). This
system suffers from the fact that the sample is very small and may not be
representative ; and, the technique at present available in this country is only
sufficiently sensitive to detect changes which would cause a gross break in
ballistics. The technique may, however, be capable of improvement. In the
United States it is very widely used and relied on ; for some natures a closed-vessel
test is applied to every propellant lot, and proof in the gun is dispensed with except
for occasional check lots.
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14.11. New nature of propellant

In the early stages of the production of a new nature of propellant it is sometimes necessary
to assess adjusted charges for filling before a standard has been made : it will therefore be
necessary to prove these lots against a standard of another nature. The effect of gun wear on
velocity may be expected to differ for the two propellants so that this procedure violates the
basic assumption that variations from standard conditions have the same effect on the standard
and on the lot under proof. Results will therefore contain an error which can, however, be
reduced in magnitude by using a gun as little worn as possible. Care must be taken to fire
anti-interference rounds after each change of nature of propellant. This procedure should be
regarded as a make-shift and lots so proved should be re-proved against a standard of the correct
nature when this becomes available.

14.12. Special proof procedure

Multi-charge howitzers. Where a howitzer has more than two charges of the same size
of a given propellant, it is only necessary to prove and calculate adjusted charge weights for
the top and bottom charge of each size ; adjusted charge weights for the intermediate charges
can be interpolated, using the approximate method of computation in Section 11.06. A pre-
requisite is that accurate charge determination firings shall have been carried out with one lot
of propellant for the velocities of adjustments of all the charges.

Cross adjustment. - This method was devised in order to economise in propellant charges
of large guns. With each nature of gun is associated a gun of about 4 to 5 inches calibre ;
from the paste of each lot of propellant for the larger gun, a sample is pressed in a smaller size
suitable for the smaller gun. The first few lots are proved in both guns, each with its
appropriate size, and adjusted charge weights are deduced ; from these results a linear
co-relation formula is calculated, to give the adjusted charge weight for the larger gun in terms
of that of the smaller, and also the standard deviation of the error introduced by the process.
When sufficient lots have been proved in both guns to reduce this error to an acceptable value,
proof in the larger guns is discontinued, except for occasional lots as a check. This procedure
may introduce errors due to differences in the rate of wear of the dies of the two sizes of
propellant, and in the extent to which volatile matter is removed.

14.13. Miscellaneous definitions

We conclude this chapter with a number of definitions of terms used in connection with
propellant proof.

Nominal charge weight. With any given gun, projectile and propellant there is a charge
weight which has been determined or estimated for design purposes. This charge weight,
which is known as the nominal charge weight, is that quoted in range tables and handbooks
and stencilled on cartridge bags or cases and ammunition boxes. It does not necessarily indicate
the actual filled weight of propellant.

Specification charge weight. It is sometimes found that the average run of adjusted charge
weights in current supply differs considerably from the nominal charge weight. In these
circumstances, for general purposes such as the calculation of the amount of cordite required
to meet orders for filling or for use as samples to be fired at proof, a specification charge weight
is agreed and used. 'This quantity has no service significance and is of no interest to the user ;
its use, when applicable, avoids the necessity for altering the nominal charge weight, with
consequent alterations to designs, publications, and the markings of cartridges and packages.

Range-table muzzle velocity. This is the velocity for which the range table is compiled
and for which instruments are graduated. It is frequently fixed of necessity before a charge
determination is carried out, and is intended to represent approximately the muzzle velocity
which will be realised with a quarter-worn gun at the charge temperature (70° F. for Naval



184 INTERNAL BALLISTICS

Service ; 60° F. for Land Service) for which the range table is compiled, but it is generally
rounded off to an even 50 or 100 f.s. The range-table muzzle velocity is not related directly
to the velocity of adjustment, but the range table, or the calibration scales of instruments, provide
a method for applying a correction for the difference between the former muzzle velocity and
the velocity actually realised by the gun ; this latter quantity may be found either by calibration
or from the range-table wear table of which the zero is directly related to the velocity of
adjustment.

Velocity to be expected in a new gun at 60° F. (Naval Service : 70° F.).

This quantity is included explicitly in all range tables : it is the origin of the range-table
wear table, and is the velocity which adjusted charges at the stated temperature should give
with shell of standard weight in a new gun. It is derived from the velocity of adjustment
by applying corrections for the difference in charge temperature, the difference in ballistics
between proof shot and shell, and the absence of crusher gauges.
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CHAPTER XV

STATISTICAL METHODS AND THEIR APPLICATION TO INTERNAL
BALLISTICS

15.01. The application of statistical methods to tracking down and minimising variations in
muzzle velocity and maximum pressure began in 1942 when a paper* was submitted to the
Scientific Advisory Council of the Ministry of Supply, drawing parallels between the problems
of proof and experimental ballistics and those of mass production, and suggesting that the
statistical methods then being applied in industry should be operated on the proof ranges.
The year 1943 and subsequent years saw the publication of papers discussing different
aspects of the applications of statistics to ballistic firings and in particular to cordite and gun
proof. Some of the more important points in these papers are discussed in this chapter.

The aims of all ballistic firings are either to improve accuracy in shooting or to ensure safety
in the firing of the gun. Internal ballistic firings naturally direct attention towards muzzle
velocity and pressure, and it is these quantities which are now to be analysed statistically.
As far as safety is concerned, the ballistician is interested only in the maximum pressure on
which little analysis has as yet been done. The position is different for muzzle velocity.
Regularity in muzzle velocity is of great importance in improving accuracy. There are
inevitably variations present in ammunition, and these in turn must lead to chance variations
from round-to-round in muzzle velocity. There are also variations which can be attributed
to special causes as for example charge temperature and state of wear of the gun. Statistical
methods are used to separate and measure these variations. The relative importance of the
variations then becomes apparent and the ballistician can see which require his attention. The
remainder of this chapter refers only to muzzle velocity although most of the techniques described
are quite general and could be applied also to maximum pressures.

15.02. The types of problems which statistical methods can help to solve

The ballistic problems to which statistics can help to provide the answer may be divided
into five main headings. These are given below, together with examples and the name of the
technique which affords the solution of the particular problem. The techniques are described
in Sections 15.04—15.08 inclusive.

SIGNIFICANCE OF DIFFERENCES. This 1s best illustrated by an example. A new type
of propellant is being tried out. Only a little of this propellant has been made because it has
to be made on an experimental plant with a very limited capacity, and in fact there is hardly
enough propellant for five rounds of ammunition. The five rounds are therefore fired under
controlled conditions against a six round series of a standard lot of propellant of known
characteristics. From the result of the firings of these rounds it has to be decided whether
the muzzle velocity of the experimental ammunition is really higher (or lower) than that of
the standard ammunition, and the variations in muzzle velocity of the experimental ammunition
are really greater (or less) than those of the standard ammunition ; and in both cases, what
is meant by the word really ?

Statistical tests have been devised to provide the answers to these questions. The test

which is applied to the first is called the [-test and that applied to the second is called the
t-test.

* 1. R. Womersley : A Statistical Analyvsis of measurements of muzzle velucity and maximum pressure at cordite
proof and at gun proof. R.D./Ball Report 23 42,

190
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CORRELATION OF TWO OR MORE VARIABLES. The following two examples show the types of
problem which arise :—

Five guns have been fired and the muzzle velocities and wear at one inch from the
commencement of rifling have been measured at regular intervals throughout their lives.
If the muzzle velocities are plotted against the equivalent full charge (E.F.C.) values, what
is the best straight line which can be drawn through the points ? Also what will be the error
involved in the estimation, from this line, of muzzle velocities corresponding to any given E.F.C.
values ? Finally, if wear measurements were used instead of E.F.C. values, would the estimate
of muzzle velocity become any more accurate ? The finding of the line, and of the answers
to the other two questions are part of the technique of regression analysis.

A rather more complicated problem for which regression analysis is used is the production
of cross-adjustment formulae (see Section 14.12). It is required in each case to determine
the formula which will give the best estimate of adjusted charge for a given gun and charge,
without a firing proof, working only from cordite inspection data and firing results in another
gun or at another charge weight. Regression analysis sorts out the variables, shows their
relative importance, produces the cross-adjustment formula, and provides a measure of the
error of estimate.

ANALYSIS OF VARIATIONS. Probably the commonest example can be found in routine
cordite proof firings, in which five rounds from each of four lots of propellant are fired
alternatively with six standard rounds at cordite proof and the muzzle velocities accurately
measured.

Assuming that these propellant lots are so similar in nature that they may all reasonably
be assumed to produce equally regular ballistics, there are three types of variation which go
to make up the variation from round-to-round during proof. There are lot-to-lot variations,
systematic variations related in some way to the serial number of the round, and chance variations
inherent in the nature of the gun and ammunition. These can be separated and their relative
importance measured by means of the analysis of variance.

CONTROL OF QUALITY. From statistical analysis of the detailed information available
from a large number of cordite proof firings trends in manufacture quickly become apparent,
and when this information is set out graphically the results are even more obvious. By
statistical analysis it is possible to set limits on these graphs outside which the cordite proof
results must not fall if a certain standard of accuracy is to be maintained. When the trend
shows that future results will inevitably fall outside the permissible limits, action is taken to
ensure that a return to acceptable quality is made as quickly as possible. This is the control
chart technique which was applied extensively by the engineering industry to mass production
during the War.

SPECIFICATIONS. 'The use of the analysis of variance and of control charts makes much
fuller information available on the quality of propellant. With this information, the specifications
for proof and acceptance can be modified and greater control is thus obtained over the product
of the propellant factories.

15.03. Definitions of statistical terms

In this and the four subsequent sections brief definitions of statistical terms and descriptions
of statistical techniques are given. For further and more detailed study the reader is referred
to any standard work on statistical methods.*

POPULATION AND SAMPLES. These are best illustrated by an example. Propellant is
manufactured in lots and in general a complete lot is used to make charges for a specific kind

* See, for instance, Statistical methods in research and production, edited by O. L. Davies, published by
Oliver and Boyd (1947).
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of ammunition. All these charges are made to the same design and charge weight and they
have therefore the nature, design and weight in common.

To assist the manufacturers certain variations from the design weight are permitted.
If an inspector wishes to know in detail the sizes of these variations in a particular lot of 10,000
charges he is faced with the prospect of weighing accurately all of them. The 10,000 weights,
whether they are measured or not, make up a population. The general concept of a population
is that of the collection of the measurements of a particular attribute of each of a group of
individuals having something in common.

It is rarely desirable to measure all the individuals in the population, and indeed, in much
ballistic work, since each measurement involves destruction of ammunition, it is very important
to use the smallest possible number of observations which will give a fair estimate of the
qualities of the population. The two qualities about which information is generally required
are the average (or mean) and the variability (or dispersion about the mean). In practice this
information is found by selecting a small but representative sample and measuring the quality
being investigated. Clearly this answer will give only estimates of the mean and variability of
the population.

Suppose that there are 7 individuals in the sample and that the relevant measurement of
the first individual is x,, of the second is x,, and so on. 'The sample mean is given by the
equation '

x=(x+x+ ...+ x:)/n

The modern measure of the dispersion in the sample is the variance which is the average of the
squares of the individual deviations from the sample mean :—

Sample Variance = {(x, — %)? + (x, — %)2 + . . . + (xa — %)*}/n

The square root of the variance is called the standard deviation, and it also is used extensively
as a measure of dispersion. It has the advantage that it is always measured in the same units
as the original observations.

The variance is widely used nowadays because it is simpler to manipulate than the standard
deviation. For example, the variance of the sum of a number of independent variables is
equal to the sum of the variances. If V (x) denotes the varianceof xand V(x +y + 2 4-...)
denotes the variance of the quantity produced as a result of summing independent variables
x, ¥, z and so on, then

VE+y+ar+..) = VO+VE+VE@+ ...

This is of great importance in the analysis of variance (to be described later).

To find the standard deviation of the sum of a number of independent variables involves
the squaring of standard deviations, adding them and finding the square root—a rather Jaborious
process. The same is also true of the mean deviation. (See Section 15.09).

DEGREES OF FREEDOM. This is a most difficult concept which may be best understood
by considering an example :—

A particular lot of propellant is made up into charges all of the same adjusted charge weight
(within limits). The precise weight of any charge will not have any connection with the precise
weight of any other charge apart from the general approximate agreement with the common
adjusted charge weight. If a sample of n charges is selected, the charge weights of these n
charges will be independent in the above sense. If now the deviations of these n weights
from the mean weight of the sample are calculated, there will only be n—1 independent quantities.
This can be understood by considering the equation for the mean in the following form :—

nx =%, + X, + ... 4 Xn—y + Xn
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If x is fixed, (n — 1) of the weights can be varied in any manner, but the last one can only have
the one value which will make both sides of the equation balance. In other words only (n — 1)
of the weights are free to move, and the set of deviations is said to have (n — 1) degrees of
freedom. The n original weights, all being independent, had »n degrees of freedom.

In general, if there are m samples of each of n observations, the deviations of all the
measurements from their own sample means will have m (n — 1) degrees of freedom, the
sample means themselves having the other m degrees of freedom to account for all the mn
measurements.

POPULATION ESTIMATES. Generally the sample variance and mean are not of themselves
important. Their real use is to provide the best estimates of the variance and the mean
respectively of the population from which the sample comes.

The best estimate of the mean of the population is the mean of the sample, but the best
estimate of the variance of the population is not the variance of the sample. This is because
the mean of the sample itself can vary and in fact has a variance. The best estimate of the
population variance is the sum of the squares of the deviations divided by the degrees of freedom
in the sample. The formula for an estimate based on a sample of » observations is

Population variance = {(x; — x)? + (x, — x)2 + . . . + (xn — x)*}/(n — 1)

In the analysis of variance the rule is, to find the estimate of the population variance
divide the sum of squares of the deviations by the relevant number of degrees of freedom.

15.04. Significance tests ; the F-test and the t-test
In the normal problem there are two populations from each of which a small sample has
been selected at random and it is required to discover from these two samples whether for all
practical purposes the variability and average values of the two populations are really different.
Suppose that the first sample consists of # measurements designated by x,, x,, x3, . . .Xn,

and the second sample of m measurements designated by y;, ¥,, ¥5, . . . Ym.
The average of the first sample is given by the equation

x=(% + %+ ...+ xn)/n
and of the second sample by
y=O+y:+ ...+ ym)m
The estimates of the population variance are given by
Vi={@--%+(x—=%)+ ...+ @ —3"}/HE-1
={x?+ 2 + ...+ xa? — nx*}/(n — 1)
and similarly
Ve={p"+y'+ ... +yu* —my}(m—1)
and it is assumed that V, is greater than V,.

The difference in the variability is investigated by the F-test by comparing F (= V,/V))
with the figures in the table of the Variance Ratio (Table 15.01) corresponding to the values

of m—1landn—1
If the ratio F is less than that in the sub-table headed * 0-20 significance level,” a larger
ratio than that found would, over a long series of such experiments, occur in at least one-fifth
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of them, while if the ratio is more than that in the sub-table headed ‘‘ 0-001 significance level,”
on the average over a thousand trials would need to be done before a larger'ratio could be found.
In the first case the variabilities in the two samples are to all intents and purposes the same,
while in the second they are quite different. The two other sub-tables are there to measure
intermediate degrees of difference.

The difference in the average values of the two populations is investigated by finding the
difference between the sample means and comparing it with the theoretical standard deviation
of the difference of means of samples, one of m individuals and one of # individuals, from the
two populations combined.

The difference between the sample means may be written |x —3 | while the standard
deviation of the difference, which will be designated by o (d), is

o= [

1y
n+m]

The ratio of the difference to the standard deviation is designated by the letter ¢ so that

t =|x—y|/o(d)

The columns in Table 15.02 correspond to the sub-tables in Table 15.01 and the significance
of any value of ¢ is found by comparing the value found with the tabular values for n 4+ m — 2
degrees of freedom.

A numerical example which illustrates the technique is as follows :—

6 standard rounds are fired alternately with § rounds of experimental ammunition in
the Q.F. 25-pounder.
The velocities are as follows :—

STANDARD AMMUNITION EXPERIMENTAL AMMUNITION
Round M.V. Difference Round M.V. Difference
No. /s from 1495 No. f/s from 1503
2 1502 + 7 3 1508 + 5
4 1488 —7 5 1505 + 2
6 1500 15 7 1502 —1
8 1496 +1 9 1496 —17
10 1498 -+ 3 11 1504 + 1
12 1486 —9
Mean 1495 + 16—16 - 0 Mean 1303 +8—8=0

The problems to be sclved are :—

1. Is the experimental ammunition really more regular than the standard ?

2. s the experimental ammunition really 8 f/s or more higher than the standard ?
'The variances are :---
Variance of standard

= L TP A (=7 4 (4 5) - (- 1) 4 (4 B) + (— 9)7] = 428 (£/sV?
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Variance of experimental ammunition
=3 [(+ 5 + (+ 2 + (= 1)’ + (—7)* 4 (+ 1)?] = 20 (f/s)’
ProBLEM 1. Is the experimental ammunition really more regular than the standard ?
F = 42-8/20-0 = 2-14

From Table 15.01 it appears that a F-ratio of greater than 2-14 will happen by chance about
once in five experiments if the two series (of 6 and 5 rounds) were actually derived from the
same population.

The answer to problem 1 is that the experimental ammunition has not proved itself, from
this trial, to have been more regular than the standard. If, however, 40 rounds of each variant
had been fired and the F had been 2-14 it would have been correct to deduce that the experimental
ammunition was more regular, because such a thing would happen by chance only once in
more than 100 trials. If the point is an important one a much more extended trial is therefore
necessary.

ProBLEM 2. Is the experimental ammunition really 8 f/s (or more) higher than the

standard ?
214 4 80\ /5 + 6\t
@)= (575) (535) ] =34

t =8/3-46 = 2-:312
From Table 15.02 for 9 degrees of freedom if ¢ >> 2-312 it can be deduced that a difference
at least as large would appear by chance once in 20 times if the whole series of 11 rounds had

been selected from the same type of ammunition.
It is thus fair to deduce that there is a real difference in the mean muzzle velocity but to

confirm it the trial should be repeated.

15.05. Regression analysis

There are two problems involved here. If we have a series of velocities plotted against
wear or E.F.C. values, what is the straight line which can be drawn most closely through the
points and what is the measure of the variation of these points from the line ?

Normally a large number of points would be available, but to simplify the calculations,
only 10 points will be taken in the example below.

The following are 10 muzzle velocities each representing the mean of a 6-round series set
against the E.F.C. value corresponding to the first round of each series.

E.F.C. value M.V.in f/s.

50 2810
106 2783
143 2762
201 2770
254 2720
310 2719
348 2688
397 2646
449 2674
502 2638

Mean 276 2721
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Call the E.F.C. value x and the muzzle velocity y. The individual values of x and y are
subtracted from the mean values to simplify the arithmetic, and the analysis is as follows :—

8x 3y (8x)? (3y)? 3x 3y
— 226 4 89 51076 7921 — 20114
— 170 + 62 28900 3844 — 10540
— 133 + 41 17689 1681 — 5453
— 75 + 49 5625 2401 — 3675
— 22 — 1 484 1 + 22
+ 34 — 2 1156 4 —_ 68
+ 72 — 33 5184 1089 — 2376
+ 121 — 175 14641 5625 — 9075
+ 173 — 47 29929 2209 — 8131
+ 226 — 83 51076 6889 — 18758
Totals 0 0 205760 31664 . — 78168
205760\
Ox =( o = 1434
31664\t
Gy :( =0 ) = 5627

If n is the number of pairs of observations, the mean product deviation

= X3xdy/n = — 7816-8
Coefficient of correlation,
r = Zdxdy/nox o, = — 9687

The answers to the questions above are respectively : the straight line which can be drawn
most closely through these points is given by the equation

(y — Yoy =1 (x — X)/ox
Substituting the above values leads to muzzle velocity
== 2826 — -38x {/s

and the standard deviation of the observed muzzle velocities from the estimates of muzzle
velocity by this formula is

oy /(1 — 72) = 140 f/s.

This result could also be obtained directly by finding the individual deviations of the observed
muzzle velocities from the estimates of muzzle velocity by the first equation, summing their
squares and taking the square root of the average.
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The square of this figure is called the residual variance about the regression line of muzzle
velocity on E.F.C. value.

15.06. Analysis of variance
Suppose that a current standardisation consists of five-round series of the master and
current standards fired round for round on five different occasions. (Normally an extra
standard round is fired (see Section 14.07), but the inclusion of this round would complicate
the following discussion out of all proportion).
The following are the actual details of such a standardisation :—
Gun B.L. 6 inch Mk. XII
Propellant : SC 122

Master-Standard Velocities Current-Standard Velocities
Occasion A B C D E A B C D E
Round number

2750 | 2740 | 2733 | 2725 | 2729 | 2750 | 2739 | 2738 ,| 2732 | 2729
2 2731 2726 | 2729 | 2734 | 2730 | 2743 | 2740 | 2741 2740 | 2730
3 2741 2730 | 2723 | 2727 | 2729 | 2750 | 2735 | 2743 | 2737 | 2736
4 2743 | 2727 | 2720 | 2730 | 2725 | 2745 | 2738 | 2733 | 2735 | 2729
5 2736 | 2728 | 2721 | 2730 | 2728 | 2744 | 2735 | 2740 | 2739 | 2729

The master-standard velocities will be analysed first.
To reduce the figures to manageable proportions, deduct 2735 f/s (approximately the
average velocity of all 50 rounds) from all the velocities.
The master-standard table then becomes, with horizontal and vertical totals added and

meaned :—
Totals Means
Occasion A B C D E of rows of rows
Round number
1 15 5 —2 —10 —6 2 4
2 —a4 —9 —6 —1 —5 —25 —5:0
3 6 —5 —12 —8 —6 —25 —5.0
4 8 —8 —15 —5 —10 —30 —6-0
5 1 —7 —14 —5 —7 —32 —6-4
Totals of columns 26 —24 —49 —29 —34 —110 —4-4
Means of columns 52 —4-8 —9-8 —5-8 —6-8 —4-4

The occasion-to-occasion variation, as measured by the variance of the occasion means
with the number of occasions as denominator is

§{(5:2F + (— 48)* + (—98)* + (— 5:8)* + (—6:8)*} — (— 44)* = 25-84 (f/s)?
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The systematic round-to-round variation, as measured by the variance of the mean velocities
of the rounds with the number of rounds per series as denominator is

3{(0-4) + (=50 + (— 5)* + (—6)* + (— 6:4)*} — (—44)* = 16064 (f/s)’

To find the random round-to-round variation, which is the total variation denuded of systematic
occasion-to-occasion and round-to-round effects, the two variances just calculated are
subtracted from the square of the deviation from the grand mean, of each velocity ; and the
25 observations are totalled as follows :—

{[15 — (— 4-4)? — 2584 — 16064} + {[— 4 — (— 4-4)]? — 25-84 — 16-064}

4+ ... o+ {[— 7 — (— 4-4)]2 — 25-84 — 16:064)
= 1204
The results 2re normally set out in a table of the following form :—
Degrees of
Variation Sum of squares freedom Variance
Between occasions 25-84 <« 25 = 646 4 1615
Between rounds 16064 x 25 = 4016 4 100-4
Residual 120-4 16 7-525
Total 1168 24 —

The degrees of freedom of the first two and the total are quite obvious—number in sample
minus one, while the figure for the residual is the difference between the total number of degrees

of freedom (24) and those already used (8).
The quotients are then estimates of the variance between occasions, of that between rounds,

and of the residual variance (i.e. the remainder).

The variances in the above table may be tested by the F-test—if any such test is thought
necessary in this case—and the first two will be found to be very significantly greater than the
residual variance.

Both the between-rounds and the between-occasions variances include a component due to
chance variation; this component is the residual variance mentioned above. It is the most
reliable estimate of the fundamental variations associated with the gun and ammunition because
it is not affected (as is the mean deviation) by systematic variations. It is, however, more
cumbersome to compute. In symbols if V,,, V,, and V, are the variance from occasion-to-
occasion, the variance from round-to-round, and the residual variance respectively, and if
oy O and o, are the standard deviations of the original populations from which the
observations in the table were a5 X 5 sample, and if n, — the number of occasions and n, = the

number of rounds per series then

"

V, i1s an estimate of n, 6, - 4,
Vn » » " yy Mg ckz _T an

v :
[ L] 3] " 1 1] GU
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and rearranging we have in the form of a table :—

Standard Numerical
Variation deviation Estimate value
Between occasions g, VIV, — Viding] 55 fis
Between rounds L VIV — Vy)ing) 4-3 f/s
Residual 8, v'Ve 2.7 fis

The same analysis may be applied to the whole standardisation by first treating the current
standard velocities as if they were further firings of the master standard, and then analysing
the firings means to investigate whether the occasion of a particular firing affected the
velocities of the master and the current standards in the same way, within the limits to be
expected from random sampling. The results of this first stage are shown in the table below.

Sum of Degrees of
Variation squares freedom Variance
Between firings 1973-7 9 219-3
Between rounds 104-2 4 26-0
Residual 6206 36 17-2
Total 2698-5 49 —

The second stage is to regard the between firings figures as the total in a new table in which
between-occasions and between-lots are analysed. In this case the residual (if any) will be a
measure of the variation which cannot be attributed either to the lot alone or to the firing alone,
that is to say the lot and firing affect each other in some unpredictable way. In statistical
theory they are said to interact and the residual variance is in this case called the interaction.
There are two other interactions (i.e. rounds X occasions and rounds X lots) which can be
calculated but are not of importance in this example.

The results of the calculations are shown below.

Sum of Degrees of
Variation squares freedom Variance
Between occasions 1120-6 4 280-2
Between lots 684-5 1 G84-5
Occasion X lot interaction 168-6 4 42.2
Total 19737 9 —
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These two tables are normally combined in one table and the significance of the other
variances and interactions tested against the original residual variance. In this example an
interaction as large would have arisen by pure chance once in about 15 times, so that there is
no evidence from these firings that there were any extraneous effects (see Section 14.04).

Interaction and correlation both involve the idea of variations which are in some way
connected. The essential difference is that correlation implies the variation of one numerical
variable with another, and the estimation of the value of the one within certain limits when the
value of the other is given, whereas interaction implies that a numerical quantity under
investigation is not only affected by certain conditions separately but also by them in conjunction.

15.07. Control charts

Under normal circumstances the manner in which the means of samples may vary can be
predicted from examination of the internal variation within these samples. For example,
suppose there are 20 samples of 5 measurements each from the same population. The best
estimate of the population variance is given by

Sum of squares of deviations from means of samples

20 x (5—1)

The variance of the means of samples of n drawn from this population is then V/n.

The means of samples are generally sufficiently nearly distributed normally (despite the
shape of the parent distribution) to enable certain elementary deductions to be drawn : if
the samples come from the same population, only one in 20 of the sample means will lie outside
the region ¥ + 24/(V/n) and only one in 500 of the sample means will lie outside the region
x 4 34/(V/n) where x is the population mean. Again, if the sample means are so disposed that
they do not agree with the above relationships either because the points are too scattered or
too concentrated, it may be deduced that the samples do not come from the same population,
and that the sample-to-sample variations are reaE or that the parent population is far from
being normally distributed.

In practice control charts are set up for the means of samples and for some measure of
sample dispersion, e.g. standard deviation or mean deviation. As soon as each sample has
been inspected, the mean and (say) mean deviation are found and plotted on the chart. As
long as the results are disposed according to the first criterion above, and there is no clear trend
up or down, the product is said to be under control. A trend or a concentration of points
outside or even towards one of the limits, is regarded as an indication of a change in quality
(the product is out of control) and as a warning that something must be done to bring the product
back under control. These limits are called action limits.

V=

15.08. Specifications
In every specification two things must be taken into consideration, the consumer’s

requirement and the practical limits to what the manufacturer can produce. Any specification
must be a compromise between the two when the consumer really wants something better than
any manufacturer can give him.

Ammunition demands the highest possible accuracy and specifications are normally
drawn up as a result of the experience of the Inspection Departments. Once production is
in full swing it is possible to reconsider the specifications with the aid of statistical analysis of
inspection records, and if necessity should arise, either to amend the specification or, if that is
not possible or desirable, to amend the manufacturing processes.

For a population having a Gaussian distribution, the specification limits might be taken
as population mean 4+ 34/(V/n), corresponding to the 499-out-of-500 region, i.e. the outer
action limits.
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15.09. Mean deviation

The mean deviation is the measure of dispersion generally used for ballistic firings. It is
used because it is very simple to calculate and although it is not so efficient a measure as the
standard deviation, it is much better than the simpler greatest difference if the number of rounds
in the series exceeds three. It is less efficient than the standard deviation in the sense that
on the average it requires a larger sample to give an equally reliable measure of the dispersion
of the population from which the sample (e.g. a five round series) is drawn. However, recent
work has demonstrated that the mean deviation is more stable under varying population
distributions than the standard deviation or the greatest difference. This may be of especial
importance in ballistic firings.

Over a large number of samples there is a close connection between the size of the variance

and of the mean deviation and some idea of this connection may be gleaned from the table
below.

Mean deviation for sample size
Variance
3 5 10

1 1-0 0-9 0-8

5 2.2 2-0 1-9

10 3-1 2-8 2-7

50 6-9 63 59
100 9-8 8-9 8-4

The mean deviation of the resultant of two independent variations is equal to the square
root of the sum of the squares of the mean deviations of the variates.
In symbols,

Meyy = ‘\/(mas-2 + myz)

It follows that if m, and m, are very unequal in size, the value of m,., will be very close to that
of the larger of m. and m,. The table below shows this clearly, and it should be borne in mind
when making deductions from the figures set out in Section 15.10.

Contribution
my my Mxty of
my to mxy y

1 1 1-414 414

3 1 3-162 -162

5 1 5-099 <099
10 1 10-050 -050
100 1 100 005 005

15.10. Variations of muzzle velocity at ballistic firings
The variations in muzzle velocity may be divided into two main classes—random and
systematic.
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The random variations in a series using one lot of ammunition are caused by combinations
of variations in such things as the ignition system, the propellant charge, the projectile and the
velocity measuring apparatus. These variations are fully discussed in Sections 12.04, 12.09,
and 14.03.

The contributions of most of these variations to mean deviation in muzzle velocity are
extremely difficult to separate and the effects of only a very few are known.

Systematic variations which contribute to inaccuracy but not to mean deviation in muzzle
velocity are variations according to occasion, lot and gun. Some of the occasion variations
can be isolated, such as the effect of temperature on any one occasion, while lot, gun, and wear
variations are generally known to a fair degree of accuracy.

The average mean deviation in muzzle velocity for a five-round series is normally about
0-2 per cent. of the muzzle velocity in medium-size guns. The figure is larger in small guns,
being about 0-45 per cent. of the muzzle velocity in guns of 40 mm. calibre, and for low charges
in howitzers where the mean deviation may be as much as 1 per cent. of the muzzle velocity.
With these exceptions it rarely falls outside the range 0-1 per cent. to 0-3 per cent. of muzzle
velocity.

It has not up to now been possible to isolate the sources of irregularity sufficiently to build
up any particular observed mean deviation.

The following table shows typical contributions to irregularity in measured muzzle velocity
at cordite proof which have up to now been discovered. The figures are discussed in detail
below.

Permitted Muzzle-velocity | Corresponding

Source of variation variation equivalent mean deviation

per cent. per cent. per cent. of M.V,
Velocity measurement + 0-1 + 0-1 0-03
Weight of proof shot + 02 T 0-08 0-03
Charge weight + 0:02 + 0-012 0-004
Effective chamber capacity + 06 ¢ 0-15 0-05
Propellant web size + 1-0 F 015 0-05
Total — - 0-08

If the observed mean deviation is 0-2 per cent. of the muzzle velocity there are further

components whose resultant mean deviation is

1/(0-22 — 0-08%) = 0-18 per cent.

In other words all the sources of variation in the above table are practically negligible. The
figures are of course typical figures and there may be quite wide divergences from these figures
in any specific instance. They will be discussed more fully in the following paragraphs.

VARIATIONS IN MUZZLE VELOCITY MEASUREMENTS

The variations in muzzle velocity measurement may be divided into three main types :
systematic variations affecting the level of muzzle velocity, those affecting the consistency,
and random variations.
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Variations of the first type are only discovered when there is an independent check. On
rare occasions they have been very large, but more often than not they are reasonably constant
for any one proof range.

Variations of the other two types cannot normally be separated. A recent trial indicated
however that the total mean deviation in muzzle velocity measurement (by Boulengé) due to
both types was about 0-3 per cent. of the muzzle velocity for low velocity charges and about
0:1 per cent. for high velocity charges.

The same trial showed that more modern types of equipment under favourable conditions
could be several times as accurate.

TOLERANCE IN PROOF SHOT WEIGHT

Until recently the tolerances were even narrower, being as small as 0-025 per cent. for
calibres above 9-2 inches, with an upper limit of 0-08 per cent. for calibres under 6 inches.
It is clear from the table above that such accurate weights are not necessary, and indeed it was
for this reason that the tolerances were widened.

VARIATIONS IN EFFECTIVE CHAMBER CAPACITY

For B.L. guns the effective chamber capacity depends on the length of ram and on the
volume of the projectile behind the driving band. In Q.F. guns it also depends on the volume
of the metal of the cartridge case—that is to say, on its weight. The volume of proof shot
behind the band has a permissible variation in general of about 0-3 per cent. of the chamber
capacity, but in some cases it may be considerably greater (e.g. in the Q.F. 25-pr. where
it equals 1-34 per cent.). These figures are equivalent to mean deviations in muzzle
velocity of 0-02 per cent. and 0-08 per cent. respectively. Variations in cartridge case weight
have a mean deviation of about 0-2 per cent. corresponding to a mean deviation in muzzle
velocity of 0-05 per cent.

VARIATIONS IN PROPELLANT WEB SIZE

The variation of web size from stick to stick has a mean deviation of about 0-6 per cent.
for SC cord and of about 2-5 per cent. for other propellants and shapes. The mean deviation
for n sticks of WM will therefore be 2-5/4/n per cent., and if # = 100 the mean deviation
= (0-25 per cent. in size corresponding to about 0-04 per cent. in muzzle velocity. The number
of sticks per Service charge varies considerably, and with SC the contribution to mean deviation
in muzzle velocity due to this source is unlikely to exceed 0-004 per cent. At the other end of
the scale WM'T charges in small guns have only a few sticks and the contribution to mean
deviation in muzzle velocity is about 0-08 per cent. Size is therefore never an important factor
within a lot of propellant.

OTHER SOURCES OF VARIATION
Other factors such as variations in ignition, in the force and rate of burning of the
propellant, and in the driving band, have so far eluded isolation or measurement.

15.11. The combination of variations at cordite proof

The principal series-to-series variations which arise at cordite proof for any given
combination of gun and ammunition are those between occasions, between guns and between
Jots, whose population standard deviations are denoted respectively by a,, ¢; and o,. Minor
contributions to the series-to-series variations are those due to the residual variance and to
gun X occasion and lot X occasion interactions. The standard deviations of these variations
are denoted by ¢, 6, and o, respectively. The lot X occasion interaction is also called the
“ Hymans effect *'* (see Section 14.04).

* J. C. 5. Hymans. A statistical investigation into an error arising in the assessment of corrected velocities at
cordite proof. R.D./P. & E.E. Report 4/43.
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These quantities may be estimated from the normal data of cordite proof from the formulae
given below. These all refer to n-round series at proof.

THE VARIATION OF THE STANDARD ABOUT THE WEAR LINE
The variance about the muzzle velocity/E.F.C.-value curve for a gun firing a single lot
is an estimate of

ap? + o’ + 657 + oY n

THE VARIATION AT MASTER STANDARDISATION OR AT GUN PROOF
The variance between the mean muzzle velocities of a number of guns each firing on a
different occasion the same lot of propellant is denoted by V; and is an estimate of

62 + 65 + a2 + 6,2 + 0'02/"

THE VARIATION AT CURRENT STANDARDISATION OR AT REPROOF
The variance between the corrected muzzle velocities of a lot fired against a standard on
several occasions is an estimate of

20,7 + ao*/n + oo*/(n — 1)

where n standard rounds and # — 1 rounds of the lot are fired. This is denoted by V,.

From these estimates and from analysis of variance of cordite proof firings it is possible
to estimate the various constituent standard deviations, but difficulty arises in the separation
of 6 and o, since the only evidence of the gun-occasion interaction arises out of special trials
involving the firing of a number of guns on different occasions.

15.12. Errors arising out of adjustment of charges

The normal procedure of charge adjustment is described in Chapter XIV. From
comparison with the above paragraphs it is clear that errors must be introduced. The sizes
of the errors as measured by the variance are as follows :—

LOTS PROVED AGAINST THE SAME CURRENT STANDARD
The lot-to-lot variance of the error of estimate is simply V..

LOTS PROVED AGAINST DIFFERENT CURRENT STANDARDS DERIVED FROM THE SAME MASTER STANDARD
An additional source of variation is introduced with a variance of V,/5 in the case of a
current standardisation consisting of 5 comparative firings.
The lot-to-lot variance of the error of estimate is therefore 6V,/S.

LOTS PROVED AGAINST CURRENT STANDARDS DERIVED FROM A SERIES OF MASTER STANDARDS

The variance of master standardisation further inflates the variance already calculated.
Since master standardisation is normally fired in a separate gun on each of six occasions this
variance i1s V;/6.

The lot-to-lot variance of the error of estimate is now

6V,/5+ V./6

15.13. Applications to routine problems ; theory
METHODS OF REDUCING PROOF

In the description of control chart technique it was shown that the internal variation of
the samples could be used to deduce regions within which the variability of a product could
be kept under certain degrees of control.



STATISTICAL METHODS AND THEIR APPLICATION TO INTERNAL BALLISTICS 205

In 1942 it was proposed that this conception of regions be extended to the adjustment
of charge weights.

The innermost region C + 2 K+/[Vy/n + V,/(n — 1)] (where C denotes the mean
adjusted charge weight of a large number of lots and K is the factor transforming muzzle
velocity into charge weight) was called the Standard charge zone and it was recommended that
all lots whose adjusted charge weights fell inside this zone should be filled to a fixed charge
weight i.e. the mean of the zone.

The larger region C + 3 Ky/[Vo/n + Vo/(n — 1)] was called the Fixed charge zone. It
was suggested that if all adjusted charge weights fell inside this zone, proof would be
unnecessary and all lots should be filled to the same charge weight.

These suggestions, originally based on an analogy with industrial applications of control
charts, were subsequently found to be reasonable, if somewhat restrictive.

The variance of the error of adjustment of lots proved against the same current standard
is V, while the real lot-to-lot variance may be written as V, where both these variances are in
terms of velocity. V, can be found from the relationship,

Variance of adjusted charge weights = K2 (V, 4 V,).

If then V, is greater than V, adjustment of lots will cause increased dispersion. If V.,
is equal to V,, nothmg is gained by adjustment, while if V,, is less than V, adjustment of charges
will always decrease dispersion. However, if V, is not very much less than V,, very little
accuracy will be lost by having some suitably chosen criterion for adjustment similar to that
of the standard charge zone. The limits need not, however, be 2K AV [Vo/n + Vo/(n — 1)]
and will depend on the relative sizes of V, and V,.*

CONTROL CHARTS

This sub-section is confined to a consideration of charts for the purpose of controlling
quality. In the main, two types of chart are important and they are discussed below.

Separate control charts are kept for each gun-ammunition combination and propellant
factory and points corresponding to the adjusted charge weights and mean deviations of the
lots under proof are plotted in order of proof. When the points as charted show distinct trends
or tendencies to cluster near a limit, further research is necessary. There are other sources
of evidence, such as the chart of the standard ballistics described below, and various check
firings and reproofs against other standards. When evidence points to either a change in the
standard ballistics or a trend in manufacture, suitable action is taken (see Section 14.09).

Collateral information can be obtained from a control chart of standard ballistics. The
ballistics of the standard are subject to occasion-to-occasion variation about the muzzle
velocity/E.F.C.-value curve. Given the occasion-to-occasion variation, and the average muzzle
velocity/E.F.C.-value relation for the gun, a control chart (i.e. a wear curve with action limits)
can be constructed. When a point lies outside the control regions there is an indication that
some abnormal condition did not apply equally to the lots at proof. This is checked against
the control charts of adjusted charge weights and mean deviation, If the adjusted charge weights
are quite normal, it may mean that the offending point is due to some abnormal day condition.
If, on the other hand the adjusted charge weights lie well away from the normal run there is a
clear indication that the standard has misbehaved. In both cases further investigations are
made to see if further information can be extracted.

* E. S. Pearson and N. L. Johnson, Notes on the problem of adjustment of lot values, as a result of proof firings.
(Departmental note : S.A.B., Ordnance Board 1942).
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SPECIFICATIONS

The important figures derived from cordite proof are the adjusted charge weight, which
for ease of filling and safety in the gun should not exceed certain limits, the mean deviation in
muzzle velocity, and the maximum pressure at the adjusted charge weight.

The accumulated data from control charts gives a great deal of information on the first
two, while if the maximum pressure is exceeded and this is confirmed by reproof, the lot is
rejected out of hand. If the adjusted charge weight is too high the lot may either be reworked
or blended with a faster lot, and subsequently proved again.

The mean deviation in muzzle velocity as laid down in the specification has generally
been arbitrarily fixed, and need not bear any relation either to the level of regularity actually
achieved, or to that required for the gun to fulfil its role efficiently. Strictly speaking, it should
be possible to tell, from a consideration of internal and external ballistic errors, how far the
internal errors can be inflated without materially affecting the external errors. (These two
interact on each other in the same way as the two independent mean deviations illustrated
in Section 15.10). From the cordite-proof control charts it can be seen whether or not this
maximum acceptable internal ballistic variation is related to the quality of production. If it
1s, the specification should be brought into line (if necessary). If the cordite-proof mean
deviation is much too large for the user, ways and means of imprcving the regularity should
be considered, and if none is acceptable the specification should be brought into line with
production. Finally, if the mean deviation at cordite proof is much lower than necessary,
it becomes a matter of policy whether more latitude should be allowed to the manufacturer,
or whether he should be forced to produce a product which is unnecessarily uniform and
perhaps more costly.

15.14. Difficulties arising in practice
HETEROGENEITY

A very extensive statistical investigation of sources of inaccuracy in firings of guns at
proof ranges produced some interesting but rather confusing results. The residual variance,
which had originally been suggested to be constant for a particular combination of gun and
ammunition was found instead to vary quite widely.

In particular the level of the residual variance varied considerably from lot to lot, while
individual guns firing the same standard lot at cordite proof gave significantly different values
for the residual variance.

Gun-to-gun variations in gradients of muzzle velocity/E.F.C.-value curves were also
found to be significantly different and to be much wider than had been thought.

In the report these variations were described as being evidence of heterogeneity. Where
heterogeneity exists, the normal statistical methods may not always apply.

CONTROL OF QUALITY OF MANUFACTURE

In propellant manufacture, once the propellant has come from the presses it goes to drying
houses to mature. This maturing process may take several weeks. Only then is a sample
selected for proof. The delay between manufacture and proof may be even longer, for sometimes
lots are manufactured in anticipation of a demand and stored until they are required. They
may be stored for many months before they are filled, and it is normal to postpone the proof
of such lots until filling is fairly imminent. It therefore becomes impossible to use the control
charts as action limits for the manufacturer to make some alteration in manufacture and the

charts tend to be used as records and for information only as far as the manufacturer is
concerned.
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15.15. Application to routine problems ; practice

GENERAL

Statistical methods are being applied increasingly to the solution of the various problems
outlined in this chapter. One field in which they have helped greatly has been in the alteration
of tolerances, for example of proof shot, where the limits imposed on the manufacturer were
unnecessanly close.

METHODS OF REDUCED PROOF

Proof has been reduced in a variety of ways, but few have been the result solely of
statistical analysis.

Fixed charge weights are filled in special charges such as star shell where consistency of
muzzle velocity is of little importance, while the lowest charges in multiple charge weapons
(e.g. howitzers) are now filled to fixed charge weights as a result of statistical considerations
based on control charts.

In the later part of the war, proof of SC cordite for the Naval Service was of a different
character from normal proof. Every lot was fired as a ballistic series at gun proof, and every
fourth lot was given a normal proof in addition. Provided that these results fell within certain
limits, all filling was to a fixed charge weight which was altered from time to time as the
proof results showed it to be necessary.

CONTROL CHARTS

The difficulties of applying the full technique of control charts in practice were mentioned
in Section 15.14. The value of the charts was, however, demonstrated when the control
charts of the Land Service Inspection Department were compared with those kept at the proof
ranges. The former were plotted in order of manufacture and were thus different from the
latter, on which the points were plotted in order of proof. The comparison of the two sets
of control charts revealed a substantial amount of information unobtainable from either set of
charts alone, and they, in conjunction with the charts of standard ballistics, and the results of
check firings and reproofs form a coherent history of propellant production and proof which
repays intensive study.

SPECIFICATIONS

Some research has been done into the application of statistical methods for the amendment
of existing cordite proof specifications and the formulation of specifications for new charges,
on the lines suggested in Section 15.13. There are considerable technical difficulties which
together with evidence of heterogeneity have retarded progress in this direction.



CHAPTER XVI
MODERN EXPERIMENTAL INTERNAL BALLISTICS

16.01. The three aspects of internal ballistics in which the greatest uncertainty prevails are :—
(i) The manner and rate of burning of the propellant,
(ii) The pressure gradient in the propellant gas, and
(ii1) The resistance to the forward motion of the projectile.

As regards the burning of the propellant, considerable experimental work has been done
in closed and vented vessels (Chapters V and XIII), but it is by no means safe to assume that the
laws derived in experiments at constant volume are equally valid under the different conditions
prevailing in a gun, where the movement of the projectile may cause a stream of gas to flow
over the burning surface of the propellant, and will bring about an expansion-cooling of the gas,
both of which factors may alter the manner in which the propellant burns.

The pressure gradient in the propellant gas has been dealt with in Chapter VII, but
approximations and assumptions are involved in the treatment. Further, as modern
requirements call for greatly increased muzzle velocities and thus increased values of the ratio
of weights of charge to projectile, on which ratio the pressure gradient depends, the 1mportancc
of a more exact knowledge of this pressure gradient is evident.

The resistance to the forward motion of the projectile enters into most methods of internal
ballistic calculations ; but the only commonly-applied method of estimating the magnitude of
this resistance has been from the analysis of measurements of maximum pressure and muzzle
velocity : in fact the value assigned to the resistance has been little more than an empirical
correction necessary to reconcile a rather inadequate theory with practically achieved results.

Considerations such as these have prompted experimental work in several countries ;
in these experiments measurements were made of various quantities inside the gun during
the passage of the projectile up the bore. These experiments were naturally difficult and
elaborate, and could not be repeated for a large range of equipments, but the results obtained
therefrom are nevertheless valuable. Some of these experiments will be described in the
following sections.

16.02. Experiments in the United Kingdom

Experiments in the United Kingdom were carried out by the Armament Research
Establishment at Woolwich and were reported in 1944.* In these experiments a modified
BL. 6-inch Mark XXII gun was used, in the barrel of which 19 radial holes were drilled for
gauges ; these holes were so spaced that the projectile passed them at approximately equally-
spaced time intervals. Series were fired with the Service charge and also with a charge of the
same propellant of larger size and increased in weight by some 40 per cent. Pressures were
recorded by tourmaline piezo-electro gauges and the recording apparatus was such that
pressure-time curves could be recorded simultaneously from two gauges. The recording
unit contained the necessary synchronising and switching gear, and an element which marked
on the same time-scale the closing of a number of external circuits. Some of the gauge holes
in the barrel were occupied by space-time gauges by means of which the projectile caused a
succession of short-circuits during its passage down the bore. At the firing of any given round,
pressures were measured by a piezo-electric gauge mounted on the front face of the vent-axial

* ]J. B. Goode and N. Lockett. The space and time variation of pressure in the bore of a gun. AC. 6953,
ARD. Ballistics Report 31/44,
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and by a second at one of the gauge holes in the bore, space gauges being inserted in the
remaining gauge holes. By recording a number of similar rounds and varying the position of
the pressure gauge in the barrel, a complete picture of the pressure-space-time relation was
built up.

The analysis of the experimental results led to the following conclusions :—
(1) The ratio of the gas pressure on the base of the projectile to that at the rear end
of the chamber could be represented with reasonable accuracy by the expression

1 — Cz/2w

(it) The resistance to the forward motion of the projectile after the first eight inches
of shot travel was approximately constant and equivalent to a gas pressure of about
0-9 tons per sq. in. During the first eight inches of shot travel, in this gun (which
was rather more than half worn) and while the driving band was passing through
the eroded portion of the bore, the resistance rose to the steady value ; there was
no evidence of a definite shot-start resistance, but on two rounds the resistance
was slightly higher than the steady value from about four to eight inches shot travel.

(i) The burning of the charge conformed well with that found in closed-vessel
experiments ; the agreement was slightly better if the value of the pressure used
in the burning equation was that at the rear end of the chamber than if an allowance
were made for the pressure gradient.

16.03. Experiments in Germany

In Germany a certain number of scattered experiments were undertaken before and
during the second world war, but the only systematic experimental attack on the problems of
internal ballistics was that carried out under the direction of Rossmann by the firm of Krupp
at their Experimental Establishment at Meppen from 1935 onwards ; they were reported to
the German Air Research Academy.*

Rossmann carried out his experiments in an 8-8-cm. Anti-Aircraft gun. He used three
giﬁerent systems for collecting data ; of these, two were used simultaneously with each round

red.

With every round fired the gas pressure at the rear end of the chamber was measured
by a quartz piezo-electric gauge mounted in the base of the cartridge case.

To determine the travel of the shot in terms of time he used special projectiles bored axially ;
a ring at the front of the projectile made electrical contact with a contact-bar which was secured
to the centre of the cartridge case but insulated from it. The bar passed up the centre of the
bore and its surface was interrupted by a series of narrow insulating segments, so spaced that
the projectile would take about 0-2 milliseconds to pass from one to the next. The records
were reproducible for about 350 mm. (i.e. for about the first tenth of the shot travel).

Other quantities were measured by means of piezo-electric gauges mounted in the projectile
the front of which was recessed conically, forming a collecting funnel. The lead from the gauge
passed from the centre of the funnel forward axially along the bore to a post some distance
in front of the muzzle, and thence to an amplifier and oscillograph. Tests without gauges
in the projectile showed that spurious voltages, variously ascribed, were picked up by the
amplifier shortly before the projectile reached the muzzle ; these were unimportant when the
quantities being measured were large, but when they were small these voltages spoiled the

®T. Rossmann. New researches in internal ballistics,  Jahrbuch der Deutschen Akademie der
Luftfahrtforschung, 1940/41, English translation by N. Lockett, ARD., Ballistic Branch Translation 2/45,
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records after about one-third of the total shot travel. The quantities which were measured
by piezo-electric gauges were :—

(i) The resistance to shot travel. For this purpose a piston of area a slid freely in
an axial hole open to the base of the projectile ; this piston was rigidly attached
to an inertia weight which bore on one face of the piezo-electric gauge of which
the other face was rigidly supported in the body of the projectile. If m is the
joint mass of the piston and inertia weight, A the total area of the base of the
projectile which is exposed to the pressure of the propellant gas, and M the total
mass of the projectile, it can be shown that if @ and m are such that a/A =m/M,
the reaction which is recorded by the gauge is proportional to the resistance to the
forward motion of the projectile, and is independent of both the gas pressure
and the acceleration of the projectile.

(it) Gas pressure at the base of the projectile. 'The gas pressure acted on an axial piston
which bore against a piezo-electric gauge mounted in the body of the projectile.
An inertia weight, of mass equal to that of the piston, set back against a second
gauge of equal sensitivity, also mounted in the projectile, and connected in series
with the first. The force recorded by the two gauges together was thus solely due
to the gas pressure on the piston.

(iii) Acceleration of the projectile. An inertia weight set back against a piezo-electric
gauge mounted rigidly in the body of the projectile.

The following checks were applied :—

(1) The pressure curve at the base of the cartridge case, as recorded by the gauge,
was substantially the same as that recorded simultaneously in an equivalent position
with a manganin resistance gauge.

(i) The mean velocities between contacts on the contact-bar were plotted against
times to form a stepped velocity-time curve ; these curves were practically identical
from 40 to 300 mm..shot travel.

(iii) The difference between the force due to the measured gas pressure on the base
of the projectile and the measured force of resistance was plotted against time
on the same graph as the plot of the measured mass-acceleration of the projectile ;
the agreement was good qualitatively and quantitatively.

(iv) The acceleration-time curve was integrated to give a velocity-time curve and plotted
on the same graph as the stepped velocity-time curve obtained from the contact
bar ; it was found to pass almost exactly through the corners of that curve.

(v) The stepped velocity-time curve was differentiated numerically and subtracted
from the measured gas-pressure curve to give a stepped resistance-space curve ;
this agreed reasonably well with the resistance curve directly recorded.

The following conclusions were arrived at :—

(i) The burning of the propellant in the gun followed the same law as in the closed
vessel.

(it) The pressure-gradient between the rear face of the chamber and the base of the
shot, for the particular conditions of the trial, was consistent with the hypothesis
that half the mass of the propellant moved as a rigid body with the projectile.

(iit) The gas pressure at the base of the projectile and the resistance to motion rose
together from zero for about 3 milliseconds to a value of about 1 ton/sq. in. before
the projectile started to move ; with a weakly rammed shot, the coincidence only
lasted for 2 milliseconds, and the resistance at this point was only about } ton/sq. in.
After the projectile started to move the resistance rose to two further peaks, of
about 2 and 2} tons/sq. in., at 4 and 4} milliseconds respectively ; the projectiles
had two driving bands, and the two peaks in the resistance curve corresponded
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closely with the positions at which the two driving bands in turn entered the
steeper part of the forcing cone. After the engraving of the driving bands was
completed, the resistance to forward motion fell off steadily to about } ton/sq. in.,
at a travel of 350 mm., the furthest point at which it was measured.

16.04. Experiments in the United States

The most elaborate and extensive series of experiments of this type were carried out on
behalf of the United States War and Naval Departments under a contract placed by the National
Defence Research Committee. The trials were fired in the David W. Taylor Model Basin
of the Bureau of Ships, U.S. Navy, under the direction of H. L. Curtis of the National Bureau
of Standards. The staff was provided by the National Bureau of Standards, the Geophysical
Laboratory of the Carnegie Institution at Washington and, for certain measuring instruments,
by the Leeds and Northrup Co.*

In this series of experiments the quantities measured included the following :—

The displacement-time curve of the travel of the projectile relative to the gun.

The velocity and retardation of the projectile outside the muzzle.

The pressure of the propellant gas in the chamber and at a series of holes bored in
the barrel of the gun.

The pressure in the recoil cylinder.

The displacement, velocity and acceleration of the recoiling gun.

The circumferential and axial stresses in the gun barrel.

The amount of heat transferred to the gun barrel.

Records were taken on a battery of 10 cathode ray oscillographs which were grouped in
five pairs, each pair (except in the case of the measurement of gas temperature) being recorded
on a revolving drum camera. Time marks at 1,000 cycles per second from a common source
were imposed on the trace from each oscillograph and two common times (one from the first
movement of the firing pin and a second from a rupteur at 50-ft. from the muzzle) were also
imposed on all traces. In addition, a voltage calibration was recorded through the oscillograph
on the drum cameras at the time of firing. The oscillograph equipment included the necessary
amplifiers and also switching gear for controlling the sequence of camera shutter, oscillograph
control, firing and calibration.

For the earlier rounds the displacement-time records were obtained by means of circum-
ferential strain gauges or by contact pins screwed through the barrel wall, but for all the
later rounds use was made of the micro-wave interferometer technique. By this techmque
a micro-wave transmitter and a receiver were mounted facing each other on opposite sides
of the gun muzzle ; a portion of the radiation, if of the appropriate wave length, travelled down
the barrel, which acted as a wave guide, was reflected from the nose of the projectile and
interfered with the direct radiation ; the resulting peaks and troughs in the received radiation
gave a measure of the position of the projectile in the bore. The records obtained were precise
and smooth but ceased a few calibres short of the muzzle.

Piezo-electric gauges for the measurement of gas pressure were employed in the early
stages but were subsequently dropped in favour of resistance gauges ; these consisted of steel
cylinders, closed at one end, with the open end exposed to the gas pressure. The expansion of
the cylinder under pressure caused a change in the resistance of a helix of ‘‘ advance >’ wire
wound round the gauge cylinder.

In order to measure the temperature of the propellant gases, quartz windows were fitted
to the holes bored in the chamber and barrel ; the radiation from these windows passed through

* Report on firing of first eleven rounds in 3-inch gun at David W. Taylor Model Basin during May, Fune and
Fuly, 1943, NDRC Report A. 229, OSRD Report No. 2019, Second report on firing of 3-inch gun in David
W. Taylor Model Basin, October 1943 to May 1944. NDRC Report A. 323, OSRD Report No. 4986.
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a red and blue filter respectively onto two photo-cells and the oscillograph recorded the ratio of
the intensity of the radiation received by the two cells. This ratio gives a measure of the gas
temperature.

The displacement of the recoiling parts was measured by means of a slider rigidly attached
to the gun barrel which moved over either a bar with insulated interruptions or over a
potentiometer slide-wire.

Recoil velocity was measured directly by the movement of a conductor attached to the gun
barrel 1n a uniform magnetic field. Two forms of recoil velocimeters were used ; in the first
the conductor was in the form of an armature which was rotated by the movement of the gun ;
in the second, the conductor moved in an annular space in which the magnetic field was uniform
and radial. The acceleration of recoil was found either by the electric differentiation of the
velocity voltage or by a piezo-electric accelerometer.

The heat transfer to the gun barrel was measured by means of thermo-couples, of which
four were attached to the outer surface of the barrel and two were embedded in holes that
were bored to within a quarter of an inch of the bore surface.

The trials were fired in a Q.F. 3-inch gun with a nearly new barrel liner with increasing
twist of rifling ; the weight of the projectile was constant throughout and propellants of two
different compositions were used. With both propellants the full service charge had a loading
density of about 0-5 and gave a muzzle velocity of 2,700 feet per second at a true maximum
pressure of 18} tons/sq. in. With one propellant, series were fired with charge weights of
100, 90, 80, 70, 60 and 50 per cent. of the service charge and with the other propellant at 100,
75 and S0 per cent. Another variable introduced was that with some rounds the bore was dry
and with other rounds it was greased as in service.

The following were amongst the conclusions reached from an analysis of the results :—

(1) The motion of the propellant either in solid or gaseous form was such that the
centre of gravity of the propellant moved with an acceleration which was, with
full charge 49 per cent., and with half charge 40 per cent. of that of the projectile ;
the amount by which this percentage was less than 50 per cent. was an indication
of the extent to which the density of the propellant and propellant gases was
higher towards the breech than it was at the base of the projectile.

(if) The maximum pressure with the dry bore was greater by about 10 per cent. than
that with the greased bore with all charges. There was some indication that this
percentage was higher at reduced charges than with full charge. The muzzle
velocity was about 20 f.s. higher with full charge, and 100 f.s. with reduced charge
with dry bores in comparison with greased bores.

(ii1) The maximum pressure indicated by electric gauges was about 15 per cent. higher
than that given by copper crusher gauges with all charges.

(iv) The pyrometers indicated a first flash of radiation from the black powder of the
primer followed by a temperature minimum : the temperature then rose to a
maximum which was of the same order as the adiabatic flame temperature of the
propellant and subsequently fell by some 600° C. as the projectile approached the
muzzle. The temperature gradient down the bore was somewhat greater than
was expected from normal internal-ballistic theory. It was believed that the
sample of gas of which the pyrometers measured the temperature was of a
considerably greater depth than that of which the temperature would be expected
to be reduced by bore-surface effects, but probably did not extend far beyond the
hole in which the quartz windows were mounted. All temperature measurements
showed violent fluctuations which were not symmetrical on the two sides of the
barrel.
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(v) The temperature and pressure gradients in the barrel were consistent with a
rate of heat transfer to the barrel walls which increased towards the muzzle as
the velocity of the projectile and therefore of the gas stream increased and also
with a very considerably increased heat transfer at the necking of the cartridge
case. ,

(vi) The resistance to the forward motion of the projectile was deduced by comparing
the acceleration of the projectile obtained from the micro-wave interferometer
records with the pressure on the base of the shot derived from extrapolation
of the pressure gradient curves. This resistance was found to vary widely from
round to round under apparently identical conditions. In a typical round in a
dry bore the resistance rose during band engraving to a maximum of about
2-7 tons/sq. in. (equivalent bore pressure) and then fell at about 2 inches shot
travel to a minimum of } ton/sq. in., thereafter it rose sharply to a maximum of
about 1# tons/sq. in. at a shot travel of about 2 ft. and subsequently fell fairly
steadily to almost zero at the muzzle. The engraving resistance rose to about
double the value with dry bores in comparison with greased bores.

(vii) The burning of the propellant was not inconsistent with that observed in closed
vessel determinations.

(viii) The radial driving band pressure in the early part of the shot travel was about
30 tons/sq. in. -with both greased and dry bores for all charges. As the projectile
advanced, the band pressure with greased bores remained approximately the
same but with dry bores it decreased very considerably with full charges but to
a much less extent with the 50 per cent. charge.

(ix) Attempts were made to determine the velocity of the projectile at the moment
that the driving band left the muzzle ; the velocity forward of the muzzle was
extrapolated backwards to the instant of shot ejection and the velocity in the bore
extrapolated forward by several methods from measurements of shot travel against
time ; the latter gave results which varied quite widely according to the method of
extrapolation which was used. It was claimed, however, that it was possible to
detect the amount by which the projectile was accelerated by the muzzle blast
after it had left the gun, though estimates of this amount varied from 2 to 20 f.s.

(x) The start of recoil of the gun occurred earlier by a measurable amount than the
start of forward motion of the projectile ; this was due to the forward motion
of the propellant under the action of the burning of the primer.



SUMMARY OF NOTATION

The following general notation is used in all Chapters except Chapters III and XV :—

A

e OO

e

<%

88~ ~Nas

N 3

[ L

Cross-sectional area of the parallel portion of the bore including the area of the
grooves when the bore is rifled. In the absence of a precise value it may be taken
as } md? x 1-02.

Weight of propellant charge.

Propellant size ; the smallest linear dimension of a piece of the unburnt propellant.
Thermodynamic efficiency of the gun.

In Chapter II, the internal energy of the propellant gases.

Force constant of the propellant.

Mechanical equivalent of heat.

Cubic capacity of the chamber when the breech is closed and the shot is in its
rammed position. With fixed ammunition, the cubic capacity of the cartridge
case when the shot is assembled in the case (except in Chapter II).

Total cubic capacity of the bore, which comprises the chamber and the parallel
portion.

Gas constant.

Absolute temperature of propellant gases at time z.

Specific volume of propellant gases (except in Chapter VII).

Co-volume of propellant gases.

Calibre, i.e., the diameter of the parallel part of the bore across the lands.
Fraction of D remaining unburnt at time ¢.

Equivalent length of initial air-space in chamber = (K, — C/3)/A.
Mean pressure of the propellant gases at time ¢ (except Chapter VII).
Time.

Velocity of shot.

Mass of shot.

Equivalent mass moved (see Chapter VII) = 1-05 w + 4C.

Shot travel at time ¢, i.e., the distance the shot has moved from its initial position.
Shot travel to muzzle — (K; — K,)/A.

Fraction of mass of charge burnt at time ¢.

Pressure index in rate-of-burning law.

Rate-of-burning coefficient.

Ratio of specific heats of propellant gases.

Density of solid propellant.

Form coefficient of propellant.

Loading density = C/K; in metric units ; 27 68C’'K, when C is in Ib. and
K, in c. in.

Generally, suffix , indicates initial values ; suffix ,, values when the pressure is

maximum (except w,) ; suffix ,, values at all-burnt ; suffix ;, values as the shot
passes the muzzle.
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2.01

2.02
2.03
2.04
2.05
2.06
2.07
2.08
2.09
2.10
3.01
5.01

TABLES

Composition and physical properties of propellants.

Atomic composition and heats of formation of propellant
constituents.

Heats of formation of the products of explosion.

Atomic composition and heats of formation of propellants.
Equilibrium constants.

Mean molecular heats.

Equation-of-state coefficients B and C.
Equilibrium-constant coefficients AB and $AC.
Internal-energy coefficients E, and E,.

Additive constants of propellant constituents.

Propellant constants.

Functions for the solution of the flame equation.

Rate-of-burning indices and coefficients.

8.01 to 8.07 Functions for the Hunt-Hinds solution.

8.08
8.09
10.01
15.01
15.02

Propellant data in British units for linear-law calculations.
Ounces and drams as decimals of a pound.

Ballistic functions for NC'T.

Significance test 2.

Variance ratios.
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TABLE 1.01
Composition and Physical Properties of Propellants

(The thermal data in this table are always subject to revision)

Percentage Composition 3 S
E . g
2 . E | ~k
— o — a ] =
g £ 2 3 z | g § | 2| R o | 8
] > =] £ o E 3 = 9 —~
E 3 = S 2 - = i) 5 5 E ]
S =z $ & E | & s T > 3 &3
Z. [ 1 0 H = o 2 = e S g .0
& 8 3 g 2 £ = 5 @ PR

k= s Z 5 £ =3 5 8 2 S 3 =

Z z = o p Q & a) Q a O Q
MD 30 65 (13:1) 5 1-58 940 1025
W 29 65 (13:1) 6 1-60 910 1025
WM 295 65 (13-1) 2 3-5 1-59 934 1013
SC 415 49-5 (12-2) 9 1-57 957 970
HSC 47 49:5 (12-2) 35 1-61 866 1175
A 25.5 56-5 (13-1) | 4-5 3.5 10 1-54 1026 810
AN 255 565 (13-1) 45 35 10+ 1-54 1018 825
ASN 36-25 50 (12-2) 5-75 8+ 1-57 1021 785
N 18-7 19 (13-1) |73 554 1-66 1058 765
NQ 20-6 20-8 (13-1) 36 55¢% 1-68 1001 880
NFQ 21 16:5(12:2) | 75 55 1-64 1066 755
NCT 99-5 (13-0) 0-§ 1-62 893 780
NH$ 86 (13-15) 1 10 | 3 1-57 978 765
FNH/P§ 83 (13:135) 1 10 S5ee 1:57 1005 740

* With 0-7 per cent. potassium nitrate

1+ With 4-5 per cent. potassium crvolite

T With 0-3 per cent. sodium crvolite
** \With 1, 2 or 3 per cent. potassium sulphate
§ Dupont manufacture.
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TABLES
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Atomic Composition and Heats of Formation of Propellant Constituents

At Constant volume at 300° K

(See Sections 2.02, 2,03.

The thermal data in this table are always subject to revision).

Atomic Composition in gm. atoms/gm. Heat of
Constituent Mol combus- | H.F. of H.F. of
Wt. tion. Products. | Substance.
C H N 0] cals/gm. | cals/gm. | cals/gm.

Nitrocellulose

11-59% N 0-02333 0-03068 0-00821 0-03586 2536 3228 692

12-0 0-02274 0-02933 0-00857 0-03608 2471 3127 656

12-2 0-02250 0-02879 0-00871 0-03617 2445 3086 641

12-4 0-02226 0-02826 0-00885 0-03626 2419 3046 627

12-6 0-02203 0:02772 0-00899 0-03635 2393 3005 612

12-8 0-02179 0:02718 0-00914 0-03643 2366 2964 598

13-0 0-02155 0-02664 0-00928 0-03652 2340 2924 584

131 0-02143 0:02637 0:00935 0-03656 2327 2904 577

13-15 0-02137 0-02623 0-00939 0-03659 2320 2894 574

13-2 0:02131 0:02610 0-00942 0-03661 2314 2883 569

13-5 0:02096 0-02529 0-00964 0-03674 2275 2823 548
Nitroglycerine

C3H N304 227-1 0-01321 0-02202 0-01321 0-03963 1635 1984 349
Carbamite

C”HzoNz() 268-3 0-06335 0-07453 0-00745 0-00373 8418 8468 S0
Mineral Jelly

C20H42 2825 0:07079 0-14865 — — 11252 11665 413
Acetone

CJHGO 58-1 0-05165 0-10331 —_ 0-01722 7346 8338 992
Diphenylamine

C,,H, N 169-2 | 0-07092 | 0-06501 | 0-00591 — 9068 8858 | —210
Picrite

CH,N,O, 104-1 0-00961 0-03843 0-03843 0-01922 1992 2199 207
Dinitrotoluene

C;H(N,O, 182-1 0:03843 0-03294 0-01098 0-02196 4709 4724 15
Dibutyl-

phthalate

C, H,,0, 278-3 | 0-05748 | 0-07904 — 0-01437 | 7389 BOBY 679
Diamyl-

phthalate

C,sH 30, 306-4 | 0-05875 | 0-08486 — 0-01306 | 7705 8383 678
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TABLE 2.02

Heats of Formation of the Products of Explosion

In kilocalories per gram molecule for formation from graphite and gaseous oxygen, hydrogen and nitrogen.
(See Section 2.03. These heats of formation are always subject to revision).

Heats of Formation (T = 300° K)
Substance Mol. Wt.
At constant At constant
pressure volume
co 28-01 26-40 26-70
CO, 44-01 94-03 94-02
H,0 liquid 18-02 68-30 67-40
H,0 gas 18-02 57-81 57-51
CH, 16-04 17-88 17-28
NH; 17-03 11-06 10-47
NO 30-01 — 21-50 — 21-50
OH 17-01 — 595 — 595
N 14-01 — 84-45 — 84-15
(0} 16-00 ‘ — 59-15 — 58-85
H 1-008 — 51-83 — 51-53
TABLE 2.03

Atomic Composition and Heats of Formation of Propellants

(See Sections 2.04, 2.05. These heats of formation are always subject to revision).

Atomic Composition (gm. atoms/gm.) Heat of
Propellant Formation
C H N (0] cals/gm.
MD -02143 ‘03118 -01004 -03565 500-4
w -02156 -02800 -01036 -03548 479-3
WM -02157 -03033 01012 -03553 493-5
SC 02232 03010 -01046 -03469 466-6
HSC -01956 02721 -01078 -03666 483-1
A 02465 -03236 -01008 ‘03313 433-2
AN -02485 -03236 -01008 -03313 433-2
ASN -02428 -03299 -00957 -03381 504-2
N -01645 -03571 -02593 -02520 292-4
NQ 01474 ‘03384 -02607 -02647 3076
NFQ -01652 -03610 -02591 -02514 296-7
NCT -02227 -02791 -00897 -03617 580-0
NH -02466 -02888 -00923 -03409 513-4
(Dupont)
FNH/P 02538 -02993 -00905 03365 509-8
(Dupont)

The heats of formation are for C graphite at constant volume and 300° K



TABLES

TABLE 2.04
Equilibrium Constants

(See Section 2.06. These data are always subject to revision).
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T™K K,(T) K,(T) K (T) K,y(T) K (T) K(T) K(T)
1000 7185 3x10—11 1x10—14 8x 1021 2x10-10 3x10~9 5x 1016
1200 1-406 7x10-9 1x10-11 2% 1016 3x10-8 2x10-7 7x10—13
1400 2-212 3x10~7 1x10™9 2x10—13 1x10—6 5%x10—¢ 1x10—10
1600 3043 6x 106 5x10—8 5x10—11 2x10-5 6x10-5 5x 10—
1700 3-438 2x10-5 2% 10~7 5x 1010 6x 105 -0002 2% 108
1800 3.832 6x 105 8x 107 3x10-9 -0001 -0004 1x 107
1900 4-206 -0002 3x 106 2x10-8 -0003 -0008 4x10~7
2000 4574 -0004 8x 106 9x10-8 -0007 -0017 1x10—6
2100 4-909 -0009 2x10~5 4% 107 -0015 -0033 3x10-6
2200 5-235 -0018 5% 10-5 1x 106 -0029 -0060 8x 106
2300 5-533 -0035 -0001 5x10—¢ -0053 0103 2x10-3
2400 5-821 -0063 -0002 1x10—3 -0091 0168 4%x10-%
2500 6-081 -0109 -0004 5% 105 0152 -0265 9x10-5
2600 6-331 -0182 -0009 -0001 -0244 -0403 -0002
2700 6-552 -0292 -0016 -0002 0378 -0596 -0004
2800 6-764 -0453 -0026 -0005 -0567 -0856 -0006
2900 6-949 -0680 -0043 0011 -0828 -1201 -0010
3000 7-127 -0995 -0070 -0023 1179 -1648 -0017
3100 7-281 -1419 -0108 0044 -1639 2217 -0027
3200 7-428 -1981 -0163 -0081 .2233 -2926 -0042
3300 7-552 2709 -0240 -0144 2989 -3799 -0063
3400 7-670 -3638 -0345 -0248 -3931 -4858 -0092
3500 7-764 4801 -0486 0415 -5094 6130 0133
3600 7-854 6236 0671 -0674 -6503 -7631 0188
3700 7-923 799 0911 -1065 -820 -940 -0261
3800 7-989 1-009 1216 -1642 1-021 1-144 -0357
3900 8-037 1-260 -1599 -2478 1-257 1-380 -0480
4000 8-082 1-556 -2073 -3663 1-531 1-648 -0637

For the purposes of interpolation, log;; K is approximately a linear function of 1/T for T greater than 2000°K.
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TABLE 2.05
Mean Molecular Heats over the Temperature Range 300°K to T°K

In calories per gram molecule per degree at constant volume.

(See Section 2.07, These data are always subject to revision).

TK co, H,0 co H, N, OH NO 0,
1000 9-409 6823 5403 5-055 5.326 5136 5592 5-751
1200 9-824 7-107 5553 5-115 5-468 5-212 5744 5907
1400 10-165 7388 5684 5-189 5-597 5-298 5869 6-037
1600 10-449 7661 5799 5-272 5712 5-390 5975 6-147
1700 10-577 7797 5852 5318 5766 5439 6024 6-198
1800 10-690 7918 5899 5-359 5814 5-482 6067 6-244
1900 10798 8-044 5-945 5-405 5861 5-529 6:110 6-290
2000 10-896 8157 5986 5-447 5-904 5-572 6149 6-331
2100 10-990 8:273 6:012 5-492 5-945 5617 6186 6373
2200 11-075 8378 6-036 5533 5-983 5657 6-220 6-412
2300 11-157 8-484 6-086 5577 6-020 5-700 6-252 6-452
2400 11233 8-581 6-131 5617 6053 5739 6282 6-488
2500 11-306 8678 6-162 5659 6-086 5780 6-310 6-525
2600 11373 8-768 6191 5697 6116 5818 6-336 6559
2700 11-438 8-857 6-218 5736 6-146 5856 6361 6-594
2800 11-498 8-940 6244 5773 6173 5891 6384 6626
2900 11-556 9-022 6269 5-811 6-199 5927 6406 6659
3000 11-611 9-099 6-293 5846 6-224 5960 6-427 6-690
3100 11664 9174 6315 5882 6248 5-993 6-448 6-722
3200 11714 9245 6336 5915 6270 6024 6467 6752
3300 11762 9315 6357 5948 6-292 6-055 6-486 6782
3400 11-808 9-380 6376 5-980 6-312 6-085 6504 6811
3500 11-853 9-444 6-395 6:012 6-332 6115 6-521 6-840
3600 11-895 9-505 6-412 6:042 6350 6143 6-538 6-868
3700 11-936 9-565 6429 6-073 6-368 6:171 6-554 6-895 -
3800 11-975 9-621 6-446 6102 6385 6-198 6-569 6-921
3900 12:013 9677 6-462 6131 6-402 6-225 6585 6-947
4000 12050 9730 6-477 6158 6418 6251 6-600 6972

For interpolation the mean molecular heats are approximately linear functions of 1/T for T greater than

2000° K.
For monatomic gases, the mean molecular heats are 2:980 throughout.
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TABLES
TABLE 2.06
B and C
(See Section 2.06)
B C
(c.c./gm.mol.) (c.c./gm.mol.)?

T°K

H, N,, CO Co, H,0 H, N, CO Cco, H,0
1600 16-4 32:1 457 —4-2 20 210 1385 220
1700 16-3 32-3 47-3 —2-5 20 200 1305 210
1800 16-2 324 48-7 —1-1 20 190 1235 195
1900 16-1 326 49-9 +0-2 20 180 1170 185
2000 16-0 326 50-9 1:2 15 170 1110 175
2100 15-9 327 51-8 2-2 15 160 1055 170
2200 15-8 32-7 52-6 30 15 155 1010 160
2300 157 32-8 53-2 3.7 15 150 965 155
2400 156 32-8 538 44 15 140 925 145
2500 156 32:8 54-4 5:0 15 135 885 140
2600 15-5 32.7 54-8 5-5 15 130 855 135
2700 15-4 32.7 35-3 6-0 15 125 825 130
2800 15-3 32.7 556 6-4 10 120 795 125
2900 15-3 326 56-0 6-8 10 120 765 120
3000 15-2 326 56-2 7:1 10 115 740 120
3100 151 326 56-5 7-5 10 110 720 115
3200 15-0 325 56-7 7-7 10 105 695 110
3300 15-0 324 56-9 8:0 10 105 675 105
3400 14-9 32-4 57-1 8-3 10 100 650 105
3500 14-8 32-3 57-3 8-5 10 95 635 100
3600 14-8 323 574 8.7 10 95 615 100
3700 14-7 322 575 89 10 90 600 95
3800 14-7 32-2 57-6 9-1 10 90 585 95
3900 14-6 32:1 377 9:3 10 85 570 90
4000 14-5 32.0 57-8 9-4 10 85 555 90
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TABLE 2.07
AB and }AC
(See Section 2.06)
— AB —4 AC
T°K c.c./gm.mol. (c.c./gm.mol.)?
1600 34-2 490
1700 338 460
1800 335 435
1900 332 410
2000 33-0 390
2100 328 370
2200 326 355
2300 32-5 340
2400 324 325
2500 322 310
2600 321 300
2700 32-0 290
2800 319 280
2900 318 270
3000 317 260
3100 316 255
3200 31-5 245
3300 31-4 235
3400 31-4 230
3500 31-3 225
3600 312 215
3700 31-1 210
3800 31-1 205
3900 310 200
4000 30-9 195




TABLE 2.08
E, and E,

TABLES

(See Section 2.07)

E,/100
cal. (c.c./gm.mol.)/gm.mol.
T K
1600 45 —110 —870 —935
1700 50 — 95 —840 —895
1800 55 — 80 —810 —3855
1900 65 — 70 —785 —825
2000 70 — 55 —755 —795
2100 75 — 40 —730 —770
2200 80 — 25 —700 —745
2300 90 — 15 —875 —725
2400 95 — 0 —845 —705
2500 100 15 —620 —685
2600 105 25 —595 —665
2700 110 40 —565 —650
2800 120 55 —540 —=835
2900 125 65 —515 —620
3000 130 80 —490 —605
3100 135 95 —465 —590
3200 140 105 —440 —580
3300 145 120 —415 —565
3400 150 130 —390 —555
3500 160 145 —365 —540
3600 165 155 —340 —530
3700 170 170 —315 —520
3800 175 185 —290 —510
3900 180 195 —265 —500
4000 185 210 —240 —490
At all temperatures in this range use
H, N, CO| CoO, H,0
10~4E, 3 34 220 35 cal. (c.c./gm.

mol)?/gm.mol.
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TABLE 2.09
Additive Constants of Propellant Constituents

(See Section 2.14. These data are always subject to revision).

Constituent (Cv)i E; n;
Nitrocellulose 0-3421 + 2531 — 0-03920 4
006 (13-15—9%N) 153 (13-15—9%N) -00218 (13:15—%N)
Nitroglycerine 0-3439 951-9 0-03083
Carbamite 0-3909 —2765-8 0-10443
Mineral Jelly 0-5983 —4175-1 0-14200
Acetone 0-5107 —2842-5 0-10336
Diphenylamine 0-3475 —3009-7 0-10645
Picrite 0-3711 — 489 0-04805
Dinitrotoluene 0-3213 — 668-4 0-06042
Dibutylphthalate 0-4261 —2656-0 0-09707
Diamylphthalate 0-4408 —2809-0 0-10130
Potassium Nitrate { 0-2158 24-9 0-00989

The above table has been taken from Hirschfelder and Sherman, N.D.R.C. Report No. A—101, 1942

as amended by N.D.R.C. Armor and Ordnance Memo. No. A—67 M, 1943.

TABLE 2.10
Propellant Constants

(See Section 2.15. These data are always subject to revision).

Adiabatic Force Co-volume Ratio of

Propellant Flame Constant c. in/lb, Specific
Temperature inch-tons/lb. Heats

Ty F b Y

MD 3220 2000 25-4 1-24
w 3300 2010 255 124
WM 3220 2000 255 1:24
sC 3090 1970 259 1-25
HSC 3630 2070 24-7 1-22
A 2680 1820 26-8 1-26
AN 2670 1810 26-8 1-26
ASN 2620 1780 26-5 1-26
N 2430 1760 278 127
NQ 2800 1900 27-0 1-25
NFQ 2410 1750 27-8 1-27
NCT 3010 1840 25-4 1-24
NH (Dupont) 2680 1760 26-5 1-26
FNH/P (Dupont) 2510 1690 26-8 1-28
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TABLE 3.01
Functions for the Solution of the Flame Equation
(See Section 3.07)

k & 7] L £]
45 -840 -397 258
39 -822 -386 -250
33 -800 372 -240
2-7 771 -355 -228
2-1 -731 -332 211
1-5 -672 -298 -188
1-4 ' -660 -291 -183
1-3 -646 -283 178
12 -631 -274 172
1-1 ‘615 265 -165
1.0 -596 255 159
0-95 -586 -249 155
0-9 -576 244 -151
0-85 +565 -238 -147
0-8 -553 -231 -143
0-75 -541 224 -138
0.7 527 -217 -133
0-65 512 210 ‘128
0-6 497 -202 -123
0-55 480 <193 -117
0-5 461 -183 ‘111
0-45 442 ‘173 -104
0-4 -419 -162 -097
0-38 410 -158 <094
0-36 -400 -153 -091
0-34 -389 -148 -088
0-32 -378 142 -085
0-30 -367 -137 -081
0-28 -355 -131 077
0-26 -342 125 074
0-24 -328 ‘119 070
0-22 -314 112 -066
0-20 -299 106 061
0-18 -282 -098 057
0-16 -265 -091 ‘052
0-14 -245 -082 047
0-12 -224 <074 042
0:10 -201 -064 036
0-08 176 054 030
0-06 -146 043 024
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TABLE 5.01
Rate-of-burning Indices and Coefficients with Initial Temperature Effects

The figures give the rate of reduction of the least grain dimension in inches per second
when the pressure is in tons/sq. in. They are always subject to revision.

Effect of 10°F. varnation
Pressure Non-linear Coefficient in initial temperature
Propellant index coefficient for linear law
o P B df,/B, dF/F
per cent, per cent.

MD 0-91 1-50 1-19 . 0-15
w 0-97 1-16 1.08 1-6 0-15
WM 1-05 1-03 1-15 22 0-15
SC 1-04 0-91 1:00 2.0 0-17
HSC 0-97 1-63 1-52 20 013
A 1-11 0-66 0-84 1-9 0-18
AN 1-06 0-72 0-82 1-8 0-20
ASN 1-05 0-69 0-77 0-9 0-22
N 0-93 0-75 0-63 1-0 0-22
NQ 0-89 0-98 0-75 0-9 0-19
NFQ 0-91 0-79 0-63 1-0 0-22
NCT 0-80 1-46 0-84 B 0-17
NH (Dupont) 0-99 078 076 0-9 0-17
FNH/P (Dupont) 1-02 0-68 071 0-7 0-21

® There are no reliable figures available,
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TABLE 8.01
Log H for Positive Values of »n/a and b/a
bja 0 01 02 -04 -06 -08 -10 -15 -20
Nla
0 0000 -0000 -0000 -0000 -0000 -0000 -0000 0000 -0000
02 0088 | -0040 | -0027 | -0017 | -0012 | -0010 | -0008 | -0006 | -0004
04 0177 -0106 -0080 -0054 <0041 -0034 -0028 0020 ‘0016
06 -0269 -0182 -0146 ‘0106 -0083 -0069 <0059 ‘0043 0034
-08 .0362 | -0263 | -0218 | -0165 | -0133 | -0112 | -0097 | -0073 | -0058
10 -0458 -0350 -0296 -0231 -0191 -0164 -0143 0109 -0088
-15 -0706 -0580 ‘0510 -0419 -0358 -0314 -0280 -0221 ‘0183
-20 0969 -0829 <0746 -0632 0553 -0493 -0447 ‘0363 -0306
-25 1250 -1098 -1004 -0871 -0776 -0702 <0642 0530 ‘0454
-30 1549 | -1386 | -1283 | -1132 | -1021 | -0934 | -0861 | -0723 | -0628
-35 1872 | -1699 | -1586 | -1419 | -1294 | -1192 | -1108 | -0944 | -0827
-40 2218 | -2036 | -1915 | -1732 | -1592 | -1477 | -1381 | -1193 | -1053
45 2596 | -2407 | -2277 | 2079 | -1924 | -1796 | -1688 | -1473 | -1310
-50 3010 | -2811 | -2673 | -2459 | -2290 | -2150 | -2029 | -1787 | -1602
-55 -3468 +3259 :3113 -2883 2700 2547 -2413 -2142 -1934
60 3979 | 3762 | -3609 | -3363 | -3164 | 2995 | -2849 | -2548 | -2313
TABLE 8.01
—Log H for Negative Values of n/a and bja
When 6'<0, N and a are negative ; b is always positive.
bla 0 —-01 —-02 —-04 —-06 —-08 —-10 —-15 —-20
Na
0 -0000 -0000 -0000 -0000 -0000 -0000 ‘0000 -0000 -0000
—02 0086 0038 -0026 <0017 <0012 -0009 -0008 0006 -0004
—-04 0170 | -0101 | -0077 | -0052 | -0039 | -0032 | -0027 | -0019 | -0015
—-06 ‘0253 0170 -0136 <0098 -0077 0064 0054 -0040 -0031
—-08 .0334 | -0241 | -0198 | -0149 | -0120 | -0101 | -0088 | -0066 | -0053
—10 0414 | -0313 | -0263 | -0204 | -0168 | -0143 | -0126 | -0095 | -0078
—-15 0607 | -0492 | -0430 | -0350 | -0299 | -0261 | -0232 | -0182 | -0151
—-20 0792 | -0667 | -0596 | -0501 | -0436 | -0388 | -0350 | -0282 | -0238
—30 1139 | -1000 | -0916 | 0799 | -0715 | -0650 | -0597 | -0496 | -0429
—-40 1461 | -1313 | -1221 | -1088 | -0989 | -0911 | -0847 | -0724 | -0634
—-50 <1761 1606 1508 -1364 1254 -1166 -1092 0948 0841
—-60 2041 | -1881 | 1779 | 1624 | -1506 | -1410 | -1329 | ‘1167 | -1046

227
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TABLE 8.02
Critical Value of YM for Maximum Pressure

If YM is greater than the value in the table a true maximum exists.
If yYM is less, the greatest pressure is at all-burnt.

% 0-00 0-05 0-10 0-15 0-20 0-25 0-30
]

—0-2 1-200 1-278 1-366 1-462 1-571 1-692 1-832
0-0 1-000 1-053 1-111 1-176 1-250 1-333 1-429
0-2 0-800 0-836 0-874 0-918 0-966 1-022 1-086
0-4 0-600 0-622 0-647 0-675 0-706 0-740 0-778
0-6 0-400 0-413 0-427 0-443 0-461 0-480 0-502
0-8 0-200 0-206 0-212 0-219 0-227 0-235 0-244
1-0 0-000 0-000 0-000 0-000 0-000 0-000 0-000

TABLE 8.03
M//(1 + 0
ME,/(1+6)? 0 05 -10 ‘15 .20 .25 -30 -35 -40
/N '
—0-2 -528 -663 -777 -885 990 | 1-093 -194 1-294 1-394
—0-1 -433 -543 -633 -718 -801 -882 -962 1-042 1-121
0-0 -368 -459 -534 604 672 -739 -805 -870 -935
0-1 -320 -398 -461 -521 -578 -634 -690 -745 -799
0-2 -283 -351 -406 -457 -506 -554 -602 -649 696
0-3 -254 -314 -362 -407 -450 -492 -534 -575 -616
0-4 -230 -284 -326 -366 -405 -443 -480 -516 -552
0-5 211 -260 -298 -334 -368 -402 -435 -467 -499
0-6 -194 -238 -272 -304 -336 -367 -397 -426 -455
0-7 -180 -220 -252 -281 -309 -337 -364 -391 -417
0-8 -168 -205 234 -261 -286 312 -337 -361 —
09 -157 192 218 -243 -267 -290 313 — —
1-0 -148 -180 -205 -228 -250 -271 — — -

Approximately,

MZy

+368 + 1:27y L y/(18:5y L 07)

(T4

where y = MZyf(1 + 0)2

DEE

1+ (15 + 06y)/N
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TABLE 8.04
N2/ M
%o 0-00 0-05 0-10 0:15 0-20 0-25 0-30
0
—0-2 1-000 -939 -879 -821 -764 -709 655
0-0 1-000 -950 *900 -850 -800 750 700
0-2 1-000 -958 915 872 -828 783 737
0-4 1-000 -964 -927 -889 -850 811 771
0-6 1-000 -968 936 -903 -868 -833 797
0-8 1-000 972 943 ‘913 -883 851 819
10 1-000 975 -949 -922 -894 -866 -837
TABLE 8.05
€)'~ =1—(yr—1) M]—KY
]
B | -00 01 -02 04 06 -08 -10 115 20 25 -30
—0-2| 790 766 743 699 658 619 583 495 417 350 292
00| -750 729 710 676 643 611 581 508 441 380 324
02| -714 696 681 653 625 599 574 512 455 401 349
04| -682 667 654 630 607 585 563 511 462 415 369
06| 653 640 629 608 589 570 551 506 463 422 383
08| -627 616 606 588 572 555 539 500 462 426 391
01| -603 593 585 569 554 540 526 491 458 426 394
K
—0-2| -079 068 059 046 037 029 022 013 008 005 003
00| -063 055 049 040 033 027 022 015 009 006 004
02| -050 044 040 034 028 024 021 015 010 007 004
0-4| -040 036 033 029 024 021 019 014 009 006 004
04| -033 030 027 024 021 019 017 012 009 006 004
08| -027 025 023 020 018 016 015 o011 008 006 004
1-:0] -023 021 019 017 016 014 012 010 008 006 004
Y
(yv-1) M| 0-0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0
Y -00 -35 65 -85 95 1:0 95 -85 65 -35 00
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TABLE 8.06
1/®' =1—(y— 1) MI + Gy
I
) g, 00 | -o1 | -02| -03| 04| 05| 06| -07| 08| 09| -10| 15| -20 | -25 | -30
—0-2 -583 | 541 | 508 | 478 | 450 | 424 | 400 | 378 | 356 | 336 | 317 | 237 | 177 | 131 | 096
—0-1 540 | 504 | 475 | 449 | 424 | 401 | 380 | 361 | 342 | 324 | 307 | 235 | 178 | 135 | 101
0-0 500 | 468 | 443 | 420 | 399 | 379 | 360 | 343 | 326 | 310 | 295 | 230 | 178 | 137 | 104
0-1 462 | 434 | 412 | 392|374 | 356 | 339 | 324 | 309 | 294 | 280 | 222 | 175 | 136 | 104
0-2 426 | 402 | 382 | 365 | 349 | 333 | 318 | 304 | 291 | 278 | 265 | 212 | 170 | 134 | 104
-03 393 | 372 | 354 | 338 | 324 | 310 | 297 | 284 | 272 | 261 | 250 | 202 | 164 | 131 | 103
0-4 362 | 343 | 327 [ 313300 | 288 | 276 | 265 | 254 | 244 | 234 | 191 | 156 | 126 | 101
05 333 | 315 | 301 | 288|276 | 265 | 255 | 245 | 236 | 227 | 218 | 180 | 148 | 121 | 098
0-6 306 | 288 | 276 | 264 | 253 | 244 | 235 | 226 | 218 | 210 | 202 | 168 | 139 | 114 | 093
0-7 279 | 263 | 252 | 241 | 231 | 223 | 215 | 207 | 200 | 192 | 185 | 156 | 129 | 107 | 087
0-8 253 | 239 | 229|219 210|203 196|189 182|175 | 169 | 143 | 119 | 099 | 081
0-9 229 | 216 | 207 | 198 [ 190 | 183 | 177 | 171 | 165 | 159 | 153 | 129 | 108 | 090 | 074
10 206 | 195 | 186 [ 179 [ 172 | 165 | 159 | 153 | 148 | 143 | 138 | 115 | 097 | 081 | 067
G
—0-2 | —010 |—003 | 000 [ 003 | 005 | 006 | 007 | 008 | 008 | 008 | 007 | 007 | 005 | 003 | 001
0-0 000 | 004 | 005 | 006 [ 007 [ 007 | 008 | 008 | 008 | 008 | 008 | 007 | 005 | 004 | 003
0-2 004 | 007 | 007 | 008 | 009 [ 009 [ 009 | 009 | 009 | 008 | 008 | 007 | 005 | 004 | 003
0-4 006 | 007 | 008|008 | 009 [ 009|009 | 009 | 008 | 008 | 008 | 007 | 005 | 004 | 003
06 006 | 007 | 008 | 008 | 008 | 008 | 008 | 008 | 008 | 008 | 008 | 007 | 005 | 004 | 003
0-8 005 | 006 | 006 | 006 | 006 | 006 | 006 | 006 | 006 | 006 | 006 | 005 | 004 | 003 | 002
1-0 004 | 004 | 004 | 004 [ 004 | 004 | 004 | 004 | 004 | 004 | 004 | 003 | 002 | 002 | 001
Yy
(Y—1)M 0-0 1 2 4 5 6 7 8 9 | 10
y 0 3 6 9 | 10 | 10 9 8 -4 0
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TABLE 8.07
Xyt

Y 1-20 1:22 1-24 1-26 1-28 1:30
X

1-0 1:000 1-000 1-000 1-000 1-000 1-000

15 1.084 1-093 1-102 1-111 1-120 1-129

20 1-149 1-165 1-181 1-197 1-214 1-231

25 1-201 1-223 1-246 1-269 1-292 1-316

3:0 1-246 1-273 1-302 1-331 1-360 1-390

35 1:285 1-317 1-351 1-385 1-420 1-456

40 1-320 1-357 1-395 1-434 1-474 1-516

45 1-351 1-392 1.435 1-479 1-524 1-570

50 1-380 1-425 1-471 1-520 1-569 1-621
60 1-431 1-483 1-537 1-593 1-652 1-712

70 1-476 1-534 1-595 1-659 1.724 1-793

80 1-516 1-580 1-647 1.717 1.790 1-866

90 1-552 1-622 1-694 1-771 1-850 1-933
100 1-585 1-660 1-738 1-820 1-905 1-995
110 1-615 1-695 1.778 1-865 1.957 2-053
120 1-644 1-728 1-816 1-908 2.005 2107
130 1-670 1.758 1-851 1.948 2-051 2-159
140 1-695 1-787 1-884 1-986 2094 2-207
150 1-719 1-814 1-915 2-022 2-135 2253

TABLE 8.08

Propellant Data in British Units for Linear-law Calculations
(See Chapter VIII.

These data are always subject to revision).

p Hant 13 b—1/5 8-653 x 103 F 12020 F

T ——— —

opetian Fp? Y (Y—1)x 108
MD 17:5 7-9 306 1-24 2000 1002
w 17-3 8-2 369 1-24 2010 1007
wM 17-4 8-1 327 1-24 2000 1002
SC 176 83 439 1:25 1970 947
HSC 17-2 7-5 181 1-22 2070 1131
A 180 88 674 1-26 1820 841
AN 18-0 88 710 1-26 1810 837
ASN 17-6 89 820 126 1780 823
N 16-7 11-1 1239 1-27 1760 784
NQ 16-5 10-5 810 1-25 1900 914
NFQ 16-9 109 1246 1-27 1750 779
NCT 17-1 8:3 667 1-24 1840 922
NH 17-6 89 851 1-26 1760 814
(Dupont)
FNH/P 17-6 9.2 1016 1-28 1690 725
(Dupont)
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Ounces and Drams as Decimals of a Pound
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TABLE 8.09

Drs. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ozs.
0 -000 | -004 | -008 | -012 | -016 | -019 | -023 | -027 | -031 | -035 | -039 | -043 | -047 | -051 | -055 | -059
1 -062 | -066 | -070 | -074 | -078 | -082 | -086 | -090 | -094 | -098 | -102 | -105 | -109 | -113 | -117 | -121
2 ‘125 <129 | <133 | <137 | -141 | -144 | -148 | -152 ] -156 | -160 | -164 | -168 | -172 | -176 | -180 | -184
3 187 | -191 | <195 | -199 | -203 | -207 | -211 | -215 | -219 | -223 | -227 | 230 | -234 | -238 | 242 | 246
4 -250 | -254 | -258 | -262 | -266 | -270 | -273 | -277 | -281 | -285 | -289 | -293 ‘ -297 | -301 | -305 | -309
5 -312 | -316 | -320 | -324 | -328 | -332 | -336 | -340 ; -344 | -348 | -352 | -355 | -359 | -363 | -367 | -371
6 -375|-379 | -383 | -387 | -391 | -394 | -398 | -402 | -406 | -410 | 414 | -418 | -422 | -426 | -430 | -434
7 437 | 441 | 445 | 449 | 453 | -457 | -461 | -465 | 469 | -473 | -477 | -480 | -484 | -488 | -492 | -496
8 -500 | -504 | -508 | -512 | -516 | -520 | -523 | -527 | -531 | -535 | -539 | -543 | -547 [ -551 | -555 | -559
9 -562 | -566 | -570 | -574 | -578 | -582 | -586 ! -590 | -594 | -598 | -602 | -605 | -609 | 613 | -617 | -621
10 625 | -629 | -633 | -637 | -641 | -645 | -648 | -652 | -656 | -660 | -664 | -668 | -672 | -676 | -680 | -684
11 687 | -691 | -695 | -699 | -703 | -707 | -711 | -715 | 719 | -723 | -727 | -730 | -734 | -738 | -742 | -746
12 750 | -754 | -758 | -762 | -766 | -770 | -773 | -777 | -781 | -785 | -789 | -793 | -797 | -801 | -805 | -809
13 812 | -816 | -820 | -824 | -828 | -832 | -836 | -840 | -844 | -848 | -852 | -855 | -B59 | -863 | -867 | -871
14 -B75 | -879 | -883 | -887 | -891 | -895 | -898 | -902 | -906 | -910 | -914 | -018 | -922 | -926 | -930 | -934
15 ‘937 | 941 | -945 | -949 | -953 | 957 | -961 | -965 | -969 | -973 | -977 | -980 | -984 | -988 | -992 | -996




TABLES

TABLE 10.01
Ballistic Functions for NCT
vy=124 x =08
(See Section 10,03)
Z X dX/dZ 1(Z) £ =Xm ML V(Z)
0-0 1-000 1-000 0-000 1-000 000 0-000
0-1 1-099 0-973 0-557 1-292 418 0-403
0-2 1-195 0:949 0-892 1:623 515 0690
0-3 1-288 0-927 1-165 1-992 -533 0-931
0-4 1-380 0-906 1-402 2-400 519 1-140
0-5 1-470 0-888 1-613 2-848 -493 1:324
0-6 1-558 0-870 1-804 3-334 -461 1:489
07 1-644 0-854 1-980 3-860 -430 1638
0-8 1-728 0-839 2:143 4-425 -399 1:775
09 1-812 0-825 2296 5-029 -370 1901
1-0 1-893 0-812 2-440 5:665 ‘344 2018
1-1 1-974 0-799 2-575 6-348 -320 2:127
1-2 2-053 0-787 2-704 7-060 -299 2:229
1-3 2-131 0-776 2-827 7-812 -279 2-324
1-4 2-208 0-765 2-944 8-598 261 2-414
15 2-284 0-755 3-056 9-432 -245 2-499
1-6 2-359 0-745 3-163 10-30 230 2-580
1-7 2-433 0-736 3.267 11-19 216 2-657
1-8 2.507 0-727 3-367 12-14 204 2-730
1-9 2-579 0-718 3-464 13-11 -192 2-800
2:0 2:650 0:710 3.557 14-12 182 2:867
Pressure is maximum when Z = 02935

M"™, = G (v, #) = 0:5331

n = 07143

(1 + n)/n(y —n) = 4565

m = 2717
[(1 +n)/n(y —n)]" = 2958
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TABLE 15.01
Significance Test
Table of ¢
(See Section 15.04)
1
Degrees

of Level of Significance
Freedom 0-10 0-05 0-02 0-01 0-001
1 6-31 12-71 31-82 63:66 636-62
2 2:92 4-30 6-97 9-93 3160
3 2-35 3-18 4-54 5-84 12-94
4 2:13 2.78 3-75 4-60 861
S 2:02 2-57 3:37 403 6-86
6 1-94 2-45 314 3-71 5-96
7 190 2:-37 3-00 3:50 5-41
8 1-86 2:31 2:90 3-36 5-04
9 1-83 2-26 2-82 3-25 4-78
10 1-81 2:23 2.76 3:17 4-59
11 1-80 2:20 2:72 311 4-44
12 1-78 2-18 2-68 3-06 4-32
13 1-77 2-16 2-65 3:01 422
14 1-76 2-15 2-62 2-98 4-14
15 1-75 2-13 2-60 2:95 4-07
16 1-75 2-12 2-58 2-92 4-02
17 1-74 2:11 2-57 2:90 3-97
18 1-73 2:10 2-55 2-88 3-92
19 1-73 2-09 2-54 2-86 3-88
20 1-73 209 2-53 2-85 3-85
21 1-72 2:08 2:52 2-83 3-82
22 1-72 2-07 2-51 2-82 3-79
23 171 2:07 2-50 2:81 3-77
24 1-71 2-06 2-49 2-80 3-75
25 1-71 2-06 2-48 279 373
26 1-71 2-:06 2-48 2-78 371
27 1:70 2:05 2-47 2-77 3-69
28 1-70 2.05 2-47 2-76 3-67
29 1-70 2:04 2+46 2:76 3-66
30 1-70 2-04 2-46 2:75 3-65
40 1-68 2:02 2:42 2-70 3-55
60 1-67 2-:00 2-39 2-66 3-46
120 1-66 1-98 2-36 2-62 3-37
4 1-65 1-96 2:33 2-58 3-29

Abridged from Table IIl of “ Statistical Tables for Biological, Agricultural and
Medical Research.” (R. A. Fisher and F. Yates: Oliver and Boyd).
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TABLE 15.02

Variance Ratios
(See Section 15.04)

Table of F
n
1 2 3 4 5 6 12 24 o o]
m 11
0-20 Significance Level

1 9-5 120 13-1 137 14-0 14-3 14-9 15-2 15:6
2 3-6 4-0 4-2 4-3 43 4-3 4-3 4-4 4-5
3 2.7 29 2-9 3-0 30 3-0 30 3-0 3-0
4 2-4 2-5 2:5 2-5 2-5 2-5 2-5 2-4 2-4
5 2-2 2-3 2-3 2.2 2-2 22 2-2 -2-2 2-1
6 2-1 2-1 2-1 2-1 2-1 2:1 2:0 2-0 2-0
7 20 2-0 20 20 20 20 19 1-9 1-8
8 2-0 20 20 1-9 19 19 1-8 1-8 1-7
9 19 19 19 19 19 18 1-8 1-7 1-7
10 1-9 19 19 18 1-8 1-8 1-7 1.7 16
15 1-8 1-8 1-8 1.7 1.7 1-7 16 1-5 1-5
20 1-8 1-8 17 17 1-6 16 1:5 1:5 1-4
30 1-7 1-7 1-6 16 16 1-5 1-5 1-4 1-3
40 1-7 17 1-6 1:6 1-5 1-5 1-4 1-4 1-2
60 1-7 17 1-6 1-6 1-5 1-5 1-4 1-3 1-2
120 1.7 1-6 1-6 1-5 1:5 15 1-4 13

<o 1-6 16 1-6 1-5 15 1-4 1-3 1-2

0-05 Significance Level

1 164-4 199-5 | 2157 | 2246 | 2302 | 2340 | 2349 | 2490 | 2543
2 18:5 19-2 19-2 19-3 193 19:3 19-4 19:5 19:5
3 10-1 96 9-3 9-1 90 89 87 86 8-5
4 77 6-9 6-6 6-4 63 62 59 58 56
5 6-6 58 54 5-2 5.1 5:0 4-7 45 4-4
6 60 51 4.8 45 44 4.3 40 38 3.7
7 56 47 4.4 4-1 40 39 36 34 32
8 53 4:5 4-1 3-8 37 3-6 33 3-1 2:9
9 51 4-3 39 36 35 3-4 31 29 27
10 50 4-1 3-7 3:5 3-3 3-2 29 27 2.5
15 45 37 33 31 29 2-8 2-5 23 2-1
20 4-4 3-5 3-1 29 27 2-6 23 2-1 18
30 4:2 33 29 2-7 2:5 2-4 2-1 19 1-6
40 41 3.2 2:9 2-6 2:5 2-3 2-0 18 1-5
GO 4-0 3-2 2-8 2:5 2-4 2-3 19 17 1-4
120 39 3-1 2.7 2-5 2-3 2-2 1-8 1-6 13
b sl 3-8 30 2-6 2-4 2-2 241 1-8 1-5 10

Abridged from Table V of * Statistical Tables for Biological, Agricultural and Medical Research.”
(R. A. Fisher and F. Yates: Oliver and Bovd).
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TABLE 15.02—continued.

n
1 2 3 4 5 6 12 24 0
m
0-01 Significance Level
1 4052 4999 5403 5625 5764 5859 6106 6234 6366
2 98-5 99-0 99-2 99-3 99.3 99-4 99-4 99.5 99-5
3 341 30-8 29-5 28-7 28-2 279 27:1 266 26-1
4 21-2 18-0 167 16-0 15-5 15-2 14-4 13-9 13-5
5 16-3 133 12:1 11-4 11-0 10-7 9-9 9-5 9:0
6 13-7 10-9 9-8 9-2 8-8 85 7-7 7-3 69
7 12:3 9.6 85 7-9 7:5 7-2 65 61 5.7
8 11-3 87 7-6 7-0 66 6-4 57 5-3 49
9 10-6 8:0 7-0 6-4 61 5-8 5-1 4.7 43
10 10-0 7-6 66 6-0 5.6 5.4 4.7 43 3.9
15 87 6-4 5-4 49 46 4-3 3.7 3-3 2-9
20 81 59 49 44 41 39 3.2 2.9 2-4
30 7-6 5.4 45 4.0 3.7 35 28 2-5 2-0
40 7:3 5.2 4.3 3.8 35 3.3 2.7 2.3 1-8
60 7-1 5-0 4-1 3.7 33 31 2:5 2:1 1-6
120 6-9 48 40 35 3.2 3.0 2-3 2-0 1-4
5o 66 46 3.8 33 30 2-8 2-2 1-8 1-0
0-001 Significance Level
| | | | I | [ |
1 Varying from 400,000 to 600,000
2 998 999 999 999 999 999 999 999 999
3 167 148 141 137 135 133 128 126 123
4 741 613 56-2 534 517 50-5 474 458 44-1
5 47-0 36-6 33-2 31-1 29-8 28-8 26-4 25-1 23-8
6 35.5 27.0 23.7 21-9 20-8 20-0 18:0 16-9 15-8
7 29-2 21-7 18-8 17-2 16-2 155 13.7 127 11-7
8 254 18:5 158 144 135 129 11-2 10-3 9-3
9 22.9 16-4 139 126 11-7 11-1 9.6 87 7-8
10 21-0 14-9 126 11-3 10-5 9.9 85 76 68
15 16-6 11-3 9-3 8-3 76 7-1 5-8 51 4.3
20 14-8 10-0 8-1 7-1 65 6-0 48 4.2 34
30 13-3 88 71 61 5.5 51 4.0 3-4 26
40 126 - 82 66 57 51 4.7 36 3.0 2.2
60 12-0 78 62 5.3 48 4-4 3.3 2.7 1-9
120 11-4 7-3 5-8 5-0 4.4 4.0 3.0 2:4 1-6
15 10-8 69 5-4 46 41 3.7 2.7 2-1 1-0

Abridged from Table V of ‘* Statistical Tables for Biological, Agricultural and Medical Research.””
(R. A. Fisher and F, Yates : Oliver and Boyd).



Fig. A.1. A German 15-cm. recoilless gun. Weighing only 1,400 Ib. in action, it fired an
84-1b. shell at 1020 f's.



APPENDIX I
The Theory of Leaking Guns

Up to 1943, when the author began to study this field, no such theory had been published.
It is now known that parallel work was being carried out at the same time, by Hirschfelder
and by Vinti in America, and by Strecke in Germany. Up to the present time, the only open
publication of theoretical work in this field is a paper by the writer.*

There are at least three applications of these theories. Firstly, we can calculate the ballistics
of a worn orthodox gun, in which gas is able to leak past the projectile in the earliest stages of
its motion. A second application, also to be discussed in this Appendix, is to smooth-bore
guns without obturating device on the shot ; the most familiar example is the muzzle-loading
smooth-bore mortar. Here the leakage of gas lowers the muzzle velocity, an effect which
would be of little consequence if the leakage area were the same in every round. As things are,
the round-to-round variations in the bomb diameter cause a dispersion in velocity. Although
the effect was known, its quantitative evaluation had not been attempted before the treatment
sketched in Section A.09 was published. This has been of value in deciding the allowable
tolerances on bomb diameter.

Although these two applications of the theory are of some importance, the leakages concerned
are only of order ten per cent. Thus very simple methods are sufficient. There is, however,
another field in which more accurate methods are essential for reliable results. This occurs
in work on recoilless guns, in which a venturi in the breech discharges gas to counteract the
recoil (Fig. A.1). A typical recoilless gun is shown in section in Fig. A.2, which shows also
the disc, usually of a thermosetting plastic, which provides the initial seal to the nozzle.

pL’iSllIC b_.'lsc of Firinig
cartridde case "-:;eal'

———————— - ————— e e et ===

y

breech black

|

‘ |

cartr:dge shot
case

Fig. A.2. A typical recoilless gun in section.

We can approach the idea of this type of recoilless gun in several ways. For example,
it may be considered as a rocket and gun built together, with a common cordite chamber.
Again, one may think of a * drainpipe,” which is obviously recoilless, and which was indeed
used as a low-performance gun by Riabouchinsky.t By forming a constriction of suitable
form in the pipe we arrive at the form shown in Fig. A.2 ; this uses less charge than the plain
drainpipe and cen be made equally recoilless. Finally, we can regard the recoilless gun as a
Davis gun in which the counter-projectile thrown to the rear is cordite gas ; in this way we
reduce the weight of the counter-projectile and eliminate the rear barrel.

The history of this type of recoilless gun appears to begin with the work of Cooke.}
German experiments began about 1937, and the first production types, the 10-5-cm. and 7-5-cm.
L.G.40, were used in the invasion of Crete. Other types built in Germany included the

* Corner, Proc. Roy. Soc., A 188, p. 237 (1947).
1 Riabouchinsky, Mem. Artill. Franc. 2 (1923), 689,
1 Cooke, U.S. patent 1,380,353,

237
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5-5-cm. MK.115 automatic gun for aircraft, and 8-8-cm. guns for light boats and aircraft.
The largest was the 28-cm. DKM 44, a coast defence gun firing a shell of 694 Ib. at 2450 ft/sec.
American interest in recoilless guns dates from 1943*, and details have been published of their
57-mm. and 75-mm. low-pressure recoilless guns.}

In such recoilless guns the leakage is far from being a small correction to be added to the
normal ballistic solution. While the charge is burning about half the gas goes out through the
nozzle, the other half remaining to increase the pressure in the gun. Thus we must produce
a more detailed solution than was adequate for the applications previously mentioned. The
theories sketched in this Appendix were in fact studied primarily for their application to recoilless

guns.

A.0l. Classical theory of nozzles

We begin by stating some useful results from the simplest theory of nozzles. The flow
of a compressible fluid through a nozzle which first converges and then diverges can be treated
very simply by the classical one-dimensional approach. We assume that the state of the
medium is a function only of its co-ordinate x, measured parallel to the axis of the nozzle.
Further assumptions which are made are that (a) loss of heat to the walls and turbulence and
surface friction can be neglected, and (b) the fluid does not separate from the walls. For well-
streamlined nozzles (a) gives results which are correct within a few per cent., and the error
can therefore be eliminated by using an empirical correction factor which is never far from
unity ; for such nozzles (b) is also true, at least until the pressure in the gas as it leaves the
nozzle falls to approximately the external pressure. This case is of no interest here.

Let S(x) be the cross-sectional area of the channel, with p, p, T and v as the values of
pressure, density, temperature, and velocity at position x. Let suffix , refer to quantities in
the large reservoir where the fluid starts from rest, and suffix ., to condmons at the throat.

We begin with the case of gases obeying the perfect gas laws. As is conventional in
internal ballistics, we write R for the gas constant per gram of the gas, and we assume that
R and y are independent of temperature. This is a good approximation in recoilless guns.
Finally, we must point out that this treatment applies only to the steady state, though it can
be used as an approximation in slowly-varying flows.

There being no accumulation of gas at any section,

Spv = Sipivr = Q A 01
where Q is a constant.
The expansion of each element of gas being adiabatic,

P Y =pros =pr Y A,02

From the equation of energy for an element as it passes down the nozzle,

(T, —T) Ry/(y — 1) = }o? A,03
The equation of state is
p = pRT A 04
At the throat dSldx — 0

® Studler, Army Ordnance, 29 (1945), 232,
1 Army Ordnance, September 1945.
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so that from A,01

1dp 1do
which leads to
TTr =2/(y + 1) A, 06

and hence the other properties of the gas at the throat are given by

pfpr = {2/(y + 1) =D A,07
peer = {2/(y + 1)} A,08
v? = 2y RT,/(y + 1) A,09

The rate of flow of mass through the system is

Q = ¢ oS¢ (RTV)! A10
— q} p'Sl (RT:)_i Asll
where $ =y {2)(y + 1) Jr+E=D A12

when there are no heat or energy losses. In nozzles of good shape ¢ lies a few per cent. below
the theoretical value. It is to be noted that ¢ is nearly independent of y when this is near
1-25, a typical value for gun propellants. Indeed, ¢ lies within one per cent. of 0-66 for the
whole range of y for Service propellants.

These equations are true only if the throat pressure as given by A,07 is greater than the
pressure in the space into which the nozzle exhausts.

With a general value of y, the conditions at any section can easily be calculated. The most
useful relations are

2/ oy + )i(y—1 2 1—1py
B = =] T EID-G) ] A

which gives the pressure at any expansion-ratio S/S,, and

T, 2{(y—1) 2 ‘t’+l (v + Wiy—1) S 72 T
7] = [ L] [-=] M

which gives the temperature at any point. The velocity can be calculated from

vt = [2yRT/(y — D] [1 — (p/p)' 1] A5

Equations A,13, 14 and 15, are true only if p is greater than the external pressure.



240 INTERNAL BALLISTICS

A.02. Co-volume corrections
The equations of the preceding section apply only to perfect gases.
Rateau® has obtained the analogous results when the equation of state is

p(ljp—b) =RT A 16
where b is a co-volume, independent of pressure and temperature. Write

e = bp,/(1 — bgy) A17
This dimensionless parameter ¢ is a measure of the effect of the co-volume. A reservoir

pressure of 25 tons/sq. in. corresponds to € = 0-35, roughly.
The adiabatics of A,16 are

p (1/p —b)Y = constant A18

Rateau has obtained the correction terms for the special case y = 1:25. Equation A,06 is
replaced by

TfT, = [2/(y + 1)][1 —0-050 ¢ + 0-018 ¢ + 0 (e%)] A,19
and A,07 by

Pfor = [2/(y + D]VO—D[1 —0-248 ¢ + 0-117 €2 + 0 (&%)] A,20
The equation of energy, formerly A,03, is now
3% = [y Ri(y — D] [T, — T] + b[p, — ] A21
leading to
v = [2YRT,/(y + D] [1 + 0:599 € — 0-128 €2 + O (e3)] A22
and the rate of flow through the system is
Q=4¢p S (RT,) " [1 — 0224 ¢ + 0-104 €2 + 0 ()] A23
The highest € reached in normal ballistics is about 0-35, and then the correction terms in A,23
rise to 64 per cent. Thus the correction can often be neglected, and is always easily included
by a slowly-varying factor.

To calculate the thrust from a nozzle it is necessary to find v/v,, where v is the velocity
at the exit section. To terms of order g,

o RS S PO ST L PN Y
i) == el [remSEoomee | A

which can be solved numerically by successive approximation.

® Rateau, Comp. Rend., /68 (1919), 330: also Mem. Artill. Franc., /] (1932), 5.
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A.03. The thrust on a nozzle
Let the velocity and pressure at the exit section of area S, be v, and p. respectively.
Neglecting atmospheric pressure, the force P on the nozzle is

P= Q‘ve + SePc A,25

Consider first a channel which converges to a throat, without a diverging part. In this

case
P - QY)‘: J.- S; p: ."\,26

which from the preceding section reduces to

P=[y+ 1][2/y + D] p, S [1 + 0-097 ¢ — 0-036 €2 + O (¢2)] A27

where, as usual, the € terms are correct only for y = 1-25. The momentum term of A,26
is just y times the pressure term, apart from the corrections. The factor

[y + 11 [2/(y + D"

varies from 1-242 to 1-255 as y changes from 1-2 to 1-3.

Imagine that the throat is gradually widened until it is of the same diameter as the reservoir,
until, in fact, the nozzle has become a pipe of uniform cross-section, open at one end and closed
at the other. The only thrust on the pipe comes from the pressure on the closed end, and
the thrust is therefore p,S.. This shows that A,27 cannot be used under all conditions.
It is certainly correct for a small ratio of throat to reservoir area. When, on the contrary,
the throat is no more than a slight constriction, A,27 cannot be used, because the velocity
at the throat is not equal to the velocity attained in a proper throat. There does not seem
to be any simple treatment of the intermediate case, though it is obvious that A,27 is still
an over-estimate when the throat area is greater than 80 per cent. of the area in the main channel
before the throat. It is likely that the accuracy of A,27 becomes rapidly greater as the throat
area is reduced beyond this value.

Table A.l. Thrust coefficient of a nozzle, { = P/p,S;

Y == l '2 '\f =1 ‘3

SefSt e=10 e =02 =0 e =02
1 1:242 1-266 1-255 1:280
1-2 1-318 1-355 1-327 1:336
14 1-369 1-403 1-374 1-381
1-6 1-408 1-440 1-409 1-414
1-8 1:439 1-470 1-438 1-440
2 1-466 1-494 1-461 1-462
2-5 1-516 1-540 1-:505 1-503
3 1-554 1-575 1-537 1-534
35 1:583 1-602 1:562 1-556
4 1-607 1-624 1-582 1-575
5 1-644 1-657 1-612 1-603
6 1-673 1-683 1-635 1-624
8 1-713 1-720 1-667 1-654

10 1-742 1:747 1-689 1-675

oo 2-247 2-211 1-964 1-934
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When there is a divergent part to the nozzle, the thrust, to terms of order ¢, is given by
the dimensionless thrust coefficient

= P/pr St = ¥[2/(y + D] [v./v:] [1 + 0-375 €]
+ [Se/Se]T ™ [vefzeY [2/(y + D]V [1 — (1:029 — 0-780 S¢ vy/S. ve) €] A28

Table A.1 shows the values of { for y = 1:2 and 1-3, with e = 0 and 0-2, and is suitable
for linear interpolation over this range of y and with € between 0 and 0-3. Although the results
are smooth to three decimal places, the last place is intended only to prevent accumulation of
rounding-off errors in interpolated values. The real accuracy of the calculations is two decimal
places, except that for e = 0-3 the neglect of €? terms is likely to cause an error of one or two per
cent. The errors of linear interpolation are less than one per cent. Both these and the €? errors
are less than the deviations between reality and this simple theory.

A.04. The equations of internal ballistics of a leaking gun

We start by deriving a set of equations which are essentially of the same order of accuracy
as those given in Section 10.02. We sketch a solution by numerical integration. A simpler
solution is then given for the case where the rate of burning is proportional to pressure, having
the same order of accuracy as Hunt-Hinds (Chapter VIII). A still simpler method consists
in a reduction to an isothermal model, which is closely related to Crow’s method (Section
9.08). This reduction is particularly useful for grasping the connection between the ballistics
of leaking and orthodox guns, and accordingly this method is placed immediately after the
most general set of equations have been derived.

ASSUMPTIONS OF THE THEORY
To begin with the assumptions underlying the most accurate set, we may list
(1) the use of a rate of burning (of the web) Pp%, and

(1i) the inclusion of a co-volume, independent of the temperature ;

(1ii) bore resistance is neglected, though it is not difficult to include it in the equations ;
for the moment we simulate the effect of the resistance by either a shot-start pressure
vanishing immediately after engraving, or an equivalent modification of B in the
rate of burning.

The following assumptions are associated with the features peculiar to a leaking gun.

(iv) No unburnt propellant is lost through the nozzle. This is obviously true for
smooth-bore guns with a small leakage area between shot and bore, and also for
worn orthodox guns.  In many types of recoilless guns the cordite is effectively
trapped by the cartridge case. Even in the most unfavourable type, guns such
as shown in Fig. A.2, the losses of unburnt cordite are small unless the charge
burns very slowly. This conclusion is reinforced by a study of the hydrodynamics
of the matter.* The assumption may be expected to break down for charges of
chopped propellant.

(v) We assume that the bursting of the disc which initially seals the nozzle and the
setting up of the flow through the breech can be represented by the use of the
equations for quasi-steady flow through the nozzle, beginning instantaneously at a
certain pressure, which we shall call the nozzle-start pressure.

The use of this idealisation requires a certain amount of care. For guns with thin discs,
such as the paper or sheet brass sometimes used, the breaking of the disc occurs at a time when
the rate of increase of pressure is small ; hence in the time taken for the flow to settle down

* Comer and Pack, A.R.D. Theoretical Research Report 27/45 ; AC 9026/ BAL 306.



APPENDIX I 243

to steady conditions the pressure in the chamber does not rise much. The nozzle-start pressure
is low, and for such guns can often be taken as zero. Thickening the disc delays the initial
flow until an epoch where the pressure is rising rapidly, and the nozzle-start pressure under
these conditions is considerably greater than that needed to break the disc. The apparent
nozzle-start pressure can therefore be expected to show a steep rise once the disc thickness
passes a certain value,

One consequence of our assumption of the flow being instantaneously attained is, that
if the nozzle-start pressure is zero, then the initial temperature must be slightly less than T,
the temperature of uncooled explosion. This is a defect of the assumption, but the errors
in the pressure are only a few per cent., and that only during the earliest part of the solution.

In the basic equations and in the more exact of the methods of handling them (Section
A.06) it is not assumed that the leakage area is constant during the firing. In most recoilless
guns the area is in fact constant. In certain other vented weapons the area does vary ; the
most obvious example is a worn orthodox gun, in which the leakage area is greatest at the start
of the motion of the shot, and decreases rapidly to zero as the projectile moves along. The
Germans also tried a recoilless gun in which the nozzle area was varied during the motion,
in rough relation to the bore resistance ; the idea was to reduce the momentary thrusts on the
carriage (¢f. Section A.11), but the most noticeable effect was erosion of the mechanism.

The more rapid method uses a rate of burning proportional to the pressure, and represents
initial resistance by a shot-start pressure.

NOTATION*

This is the same as in the Summary (p. 214), except for the following new symbols. Let
the mass of gas present in the gun at time ¢ be CN. The equation of state of the products
of uncooled explosion of the propellant is

p(ljp—b =F A,29
The burning law is

Ddfjdt = — p* A,30
with z=(1—f) (14 6f) A31

PRESSURE AND DENSITY DISTRIBUTION INSIDE THE GUN
The conventional theory of the distribution inside an orthodox gun assumes that the
density of gas is independent of position in the gun. Results of this theory are that}

the space-mean pressure = p (1 4+ C/3W)/(1 + C/2W) A32
where p 1s the pressure at the breech, and
the pressure at the shot = p/(1 + C/2W) A33

For a gun with leakage there must be some allowance for the fact that the mass of gas in
the gun never attains C. Moreover, the velocity field of the gas is altered if leakage takes place
backwards through the breech. To cover these diverse possibilities, we may consider replacing
Cin A,32 and A,33 by kC (N + 1 — z), where the numerical factor & will be unity for forward
leakage and will be reduced if the leakage is backwards. It is also possible to use, instead of
kC (N 4 1 — z), the alternative expression kCN, which corresponds to replacing C in A, 32
and A,33 by Cz, for orthodox guns. The form kCN is easier in application, and its use alters
muzzle velocity and peak pressure by only one or two per cent. at velocities up to 2000 f/s.

* Throughout this Appendix consistent units are assumed ; for conversion to practical units see p. 98,
t Section 7.07 ; equation 7,18,
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We use, therefore,
space-mean pressure = p/(1 + kCN/6W) A34
pressure at shot = p/(1 4+ RCN/2W) A35

We assume that the gas density is p everywhere along the gun at the instant considered.
Then
p[Ko + Ax — C (1 — 2)/8] = CN A,36

Let T°K. be the mean temperature of the gases at the moment considered. We have
from A,34
p(1/p — &) = RT (1 + ACN/6W)

which with A,36 becomes
p[Ko + Ax — C (1 — 2)/8 — CNb] = CNRT (1 + ACN/6W) A37

Numerical examples have shown that for guns mth a substantial leak, such as recoilless guns,
this equation may usually be replaced by

p[K, + Ax — C/3] = CNRT (1 + kCN/6W) | A,38

with ample accuracy, right up to the time when the charge is all burnt. In a typical case the
error in the pressure due to using A,38 was at most } per cent., which occurred in the early
stages ; the error decreased with time until 2 = 1, and was 0-3 per cent. when 2 = 4. This
is about a tenth of the corresponding error in an orthodox gun at the same stage of burning.

In exceptional cases errors of as much as 10 per cent. have been found. It has been noted
that for a given gun and shot these percentage errors are almost independent of the loading
and initial conditions, and are substantially constant over the important period of high pressure
during the firing. These remarks justify the following correction : we use A,38 always,
and on the first calculation with a new type of gun we find the percentage error at maximum
pressure due to the use of A,38 instead of A,37. If this error is appreciable we correct all
future runs by this factor. In the exact method it is necessary only to multiply CNRT by the
appropriate factor to get the corrected pressure. In our approximate method (Section A.07)
we absorb the correction into F, using the corrected value, F,, say, to replace F only in equations
A71, 84, 85, 90 and 91.

Where the leakage is small, as in smooth-bore guns and worn guns, the approximation
A,38 is as inaccurate as in orthodox internal ballistics. After 2 = 1, the approximation becomes
inadequate in all cases, and in this part of the solution we use the exact equation A,37.

The equation of motion of the shot is

W.dx/dt? = Ap A,39
where W, is a modified shot mass, which from A, 35 is equal to
W, =W - 1 RCN A 40

Corrections for recoil, rotational inertia and bore-resistance are included in W.*

* Section 7.01.
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NOZZLE FLOW AND ENERGY RELATIONS
It has been shown that the rate of flow through the nozzle is

Q = ¢ p, S: (RT,)™ A4l

where pr and T, refer to the reservoir conditions, and ¢ is a numerical factor which would be
0-66 if there were no heat or energy losses, and which lies a few per cent. lower for leakage
channels of good shape. Co-volume corrections reduce the flow slightly, by about 6} per cent.
at pressures of 25 tons/sq. in., and thus may be neglected. Their mean effect can be taken
into account by a slight change in ¢ between high and low pressure firings in the same gun.
We may now identify p, with p and T, with T, the latter introducing a relative error in Q of order
kRCN/30W. Hence

CdN/dt = Cda/dt — {Sp (RT)™ A42

We come now to the equation of energy. In time dt the gas gives kinetic energy Apdx
to the shot and the gas in front of the stagnation point ; a mass Cdz is evolved from the cordite,
and C (dz — dN) passes out through the nozzle. We treat this process in three steps.

(i) The gas, of internal energy CNE(T), provides kinetic energy Apdx ; in this stage the
temperature changes by

dT = — (Ap/CNo,) dx A43

where o, i1s the specific heat (at constant volume) of the gases, at temperature T ; since
6, = R/(y — 1), A/43 can be written as

CNRAT = — (y — 1) Apdx A
(i1) A mass Cdz, with internal energy E(T;)Cdz enters the gas ; hence
CE(T,)dz = CNo,dT + CE(T) dz
and so NdT = (T, — T) dz A45
if o, is constant over the range T to T .
(iii) A mass C(dz — dN) escapes through the nozzle. Since the expansion is adiabatic,

we have
ar_ y—1 d

T ~ 1/o—5p?

Also dp/p = (dN — dz)/N
Hence

dT/T = (y — 1) (1 4+ ¢) (dN — dz)/N A,46
using A,17.

Summing all three effects,

dT Ay dx dz dN dz
N—=—( *1)-@‘% z T (To—=T) 7 +— 1)(1+€)T( ?z)
and so

dNT Ap dx dz dN dz
dt —"_( l)CR d! + O-d_f+{Y+(Y I)E}T{dt Ft-}
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and using A,42
dNT Ap dx dz _ LSp (RT)}
T:_(Y_I)C—flz +Tog£—{TT(T—1)€}L2(gTR—) A47

The term in € can be omitted with a relative error of 7 per cent. at ¢ = 0-35, which is
almost exactly compensated by the error in using a constant ¢ throughout a solution.

SUMMARY OF THE EQUATIONS
With nozzle open, shot in motion, and charge not completely burnt, we have

(A,38) p (Ko + Ax — C/8) = CNRT (1 + kCN/6W) A ,48(a)
(A,39) W, d?x/dt* = Ap A,48(b)
(A,40) W, = W + 1 kCN A,48(c)
(A,30) Ddf/dt = — 8p* A,48(d)
(A,31) z=(1—/)(1 + 6) A,48(¢)
(A,42) dN/dt = dz/dt — ySp/C (RT)} A,48(f)
(A7) T -~k GG — R A

Various special cases arise : before the nozzle opens, S = 0 ; before the shot starts, x = 0 ;
after all-burnt, =z = 1, and A,38 is replaced by

# (K, + Ax — CNb) = CNRT (1 -~ kCN/6W) A,49

A.05. The equwalent non-leaking ballistic problem

In this section we shall consider a simplified version of the set of equations A,48, and by
comparison with the analogous equations for an orthodox gun we shall show the nature of the
effects produced by gas leakage. The level of approximation is essentially that of Crow’s
method.*

We assume that there is no initial resistance to motion of the shot, and that the nozzle
flow is established at a low pressure. In practical applications it is possible to make partial
correction for these approximations by altering the rate of burning. It is assumed also that
the rate of burning is proportional to pressure and that the leakage area S is constant.

Putting S =0 in A48, we return to the equations of an orthodox gun. The variation
of the gas temperature with time is decided by the competition between the two terms
remaining on the right of A,47 : the first term represents the lowering of the energy of the gas
by the work done on the shot the second term corresponds to the increase of energy by the
burning of the propellant. l"he competition between these terms leads to a temperature which
falls only slowly from the initial value T, though the decrease becomes rather more marked
towards the end of burning ; after the cordite has been consumed there is of course a further
drop of temperature during the adiabatic expansion of the gases.

* Section 9.08.
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When there is a constant leakage area S, there is an additional term on the right of A,47,
tending to lower the temperature because of the work done in pushing gas out of the nozzle.
The effect on the temperature-time curve depends mainly on the ratio S/A, where A is the bore
cross-section. For recoilless guns with nozzles of reasonably good shape, S/A lies near 0-65,
and in such cases the temperature shows a rapid drop after the nozzle opens, thereafter flattens
out, and later shows the increasing rate of decline characteristic of ordinary guns. For most
of the period of burning the gas temperature in the recoilless gun is about 90 per cent. of the
temperature at the corresponding period in an orthodox gun.

We approximate to both leaking and orthodox guns by isothermal equations, in which
the gas temperature is given a mean value during the burning. For a normal gun this mean
should be about 09 T, if co-volume terms are included in the equations, while if it is assumed
that & = 1/3 then the appropriate mean temperature rises with peak pressure, to about T,
at 20 tons/sq. in. The mean to be used with leakage is mainly a function of S/A, decreasing
to about 0-85 T, at S/A = 0-7. Thus one effect of leakage is to reduce the effective force-
constant of the propellant by an amount of order ten per cent.

We write the mean value of RT as A. Then by integrating and using « = 1, we arrive
at

p (Ko + Ax — C[3) = 2C (1 —f) (1 — ¥ + 6f) A50

after omitting the factor (1 4- ACN/6W) from the right-hand side, as this factor is never far
from unity. The dimensionless parameter

¥ = $SD/BCy/A A51

is, as it will appear, the fundamental quantity expressing the effect of leakage on the internal
ballistics. In practice ¥ is of order 0-1 for smooth-bore and eroded guns and of order 0-5
for fully recoilless guns.

A,50 may be written as

p (Ko + Ax — C/8) =2C (1 —¥) (1 — £) (1 + 6%) A,52

where
8" =0/(1—Y) A,S53

An orthodox gun with a charge C (1 — W) of cordite with mean force A and form-factor ',
would have the equation

PIKo+Ax—C(1—¥)3] =2C(1—¥)(1 —f)(1 + 87) A,54

which differs from A,52 in a term which is important only at high densities of loading.
Indeed the term C (1 — ¥')/3 is correct only at the start of motion, later increasing to C (1 — ') b,
which is 60 per cent. greater. Thus up to all-burnt the leaking gun behaves almost as if it were
an orthodox gun with the same dimensions, the smaller charge C (1 — Y), the bigger
form-factor 6’ = 6/(1 — ¥'), and a force-constant reduced as described earlier.

Since 6’ is numerically greater than 0, it follows that a shape which is degressive in an
ordinary gun is even more so in a recoilless gun.

It is also possible to approximate to the leaking gun by a normal gun with the same charge C,
form-factor 0/(1 — ¥), and smaller force-constant A(1 —¥). This is not a great deal of help in
visualising the behaviour of recoilless guns, since the change of force-constant required is
outside the experience of the ballistician, unless he is familiar with gunpowder charges. For
guns with small leakage the analogy is useful.
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The effective charge
= C(1 —Y¥) = C— ¢SD/Ba A,55

which may be written in a form which brings out the significance of the terms. From A,30
and A,39,

AD (1 — f) = pW,v A,56
and if v, is the velocity at all-burnt,
AD = BW,o,
For a typical gun, v, is about 830-90 per cent. of the muzzle velocity v;, so that we can use
AD = 0-85 pW,v, A,57
For an orthodox gun with expansion-ratio about 5, the energy of the shot at the muzzle is
3 W, 0,2 ~ CRT,/3 (y — 1) ~ 4C"»/3 A58
Substituting from A,57 and A,58 in A,55,
C ~ 3W, v,2/8\ + 0-85 (SW,v,/AN

These terms may be regarded as the part that pushes and the part that leaks, respectively. For
a recoilless gun, S/A ~ 0:65 and ¢ ~ 0-63, giving

C ~ 3W,v,2/8\ + 0-35W,z /Al A,59

The second term on the right may be regarded as the charge thrown backwards to balance
the momentum of the shot.

A formula of type A,59 was used by certain German engineers for the design of recoilless
guns, and was based on the argument that part of the charge pushes and the rest balances the
recoil. They took the coefficient of W,z ;2/A to be rather greater than 3/8, and the coefficient
of the cther term was determined by fitting to firings with reasonable charges. This process
is obviously not exact, though it does give a guide sufficient for preliminary design. The
reduction to an orthodox gun holds, it will be noticed, only up to all-burnt. After that time
the pressure-space curve shows a much more rapid drop than in the equivalent orthodox gun ;
this will be shown in Section A.08. It is clear that for this reason the coefficient 3/8 ought to
be increased, as was indeed done by the Germans. Another factor which makes it necessary
to increase this term, when dealing with recoilless guns, is that as the charge is larger than
normal the expansion-ratio tends to be smaller than usual, and the muzzle energy per unit
of effective charge C is therefore lower than in most normal guns.

A formula which is fairly satisfactory up to 2000 f/s. is
C/W = iy (y + 0-87) A,60

where y = v,/
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Strecke® has constructed a theory based on the assumptions used in our reduction to an
orthodox gun : mean gas temperature, a = 1, effective co-volume equal to the initial volume
of the charge, and nozzle opening at the instant that the shot starts. His work is more general
in that he uses a shot-start pressure to represent initial resistance, and more special in that he
considers only 6 = 0. Since he uses the balance of momentum during firing, his method is
applicable only to fully recoilless guns, whereas the present methods can be used whatever the
extent of the leakage.

In an orthodox gun the muzzle velocity is, for small changes in the charge weight, pro-
portional to the charge to a power n, where n is usually about 0-7. When there is leakage
the effective charge is C (1 — ¥'). Hence the effect of a small leakage when the charge or
web-size is not altered is that the muzzle velocity varies directly as

1—Y¥)y~1—n¥ A6l

in which n is certainly non-zero. The inefficiency of a leaking gun after all-burnt causes n
to be rather larger than for the orthodox gun with the same effective charge.

For propellants with 0 nearly zero, and not too small a web, the maximum pressure is
proportional to the square of the charge ; hence peak pressure varies directly as

(1—¥)r~1—2V¥ A,62

Exceptions are charges of cord, and fast charges in which the peak pressure occurs at
all-burnt. These can be treated by the same methods, though the final formulae are rather
different.

The central ballistic parameter Mt varies directly as

1+Y%Y A63

These ballistic quantities are thus all linear in ¥.

When we consider small changes in a large ¥, we find that such quantities as (dv,/d¥)/v,
have a factor (1 — ) in their denominators. It follows that recoilless guns, where ¥ is of
order 0-5, are more than normally sensitive to changes of web or rate of burning. A factor
which enters in all low-pressure guns is the unusually big influence of engraving conditions,
since the ratio of engraving pressure to peak pressure is exceptionally large. Low-pressure
recoilless guns are a difficult problem for the ballistician.

A.06. Numerical integration

The set of equations A,48 can always be integrated numerically in a straightforward way.
It is convenient to write these equations in terms of non-dimensional variables. We write

x = x5 withx, = K/A A 64 (a)
S = pA A,64 (b)
t =x,F it A64 (c)
T=T,T A,64 (d)
p = (CF/Ky) I A,64 (e)
v = FY dE/d« A 64 (f)

* Strecke, DWM-FMB No. 13.
1 See equation 8,08.
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The set A,48 becomes

(1+&—C/Kd) IT = NT' (1 + kCN/6W) A85 (a)
d%/d<? = CII/W, A,85 (b)
W, = W + }kCN A,85 (c)
dfldt = — (BK,/DAF?) (IICF/K,)* A85(d)
z=(1—f) (1 +9) A,85 (e)
dN/dv = dz/dx — pyI1 (T') A85 (f)
d(NT')/dv = — {(y—1) Il dt/dr + dz/dr — vudII(T')* A65 (g)
After all-burnt,
(1 + & — CNB/K)I = NT' (1 + kCN/6W) A,66

These variables increase the generality of each computed solution. They are also useful
in deriving relations of similarity.

The equations can be solved by a step-by-step integration proceeding in steps of equal
Ar. The method is straightforward. It is possible to reduce the labour of computation by
the following approximations : using A to denote increments over a step of the integration,
and bars to denote mean values over the step,

AN = Az — py (') A(f 11d7) | e
ANT) = —[(y =) Wy2C] A (dZ/dv)* + Az —yug (T)' A (fTId))  A68

Since (T’)! and W, vary only slowly, it is possible to use the same average values for several
steps in succession.

Numerical integration is suitable when the nozzle throat area S is varying during the
firing, or when bore resistance has to be taken into account ; an example where both points
arise is the treatment of a worn gun (Section A.10). The set of equations A,65 is easily
modified to include bore-resistance terms. Numerical integration seems to be necessary also
when a, the pressure-index of the rate of burning, differs substantially from unity.

Numerical integration can be carried out no matter how one may choose to represent initial
resistance. The integration need not be carried past all-burnt. An analytical solution of
ample accuracy is available for the period after all-burnt and will be explained in Section A.08.

A.07. Solution with linear rate of burning

A more rapid method than numerical integration can be used if « = 1. This has been
built up in a semi-empirical manner by a study of a large number of numerical integrations,
and offers a considerable saving of time. We assume that the throat area S is independent of
time, and the initial conditions are represented by nozzle-start and short-start pressures. We
denote conditions at these epochs by suffixes  and .

We shall work in ordinary units except that the temperature T will be written as T T'.



APPENDIX 1 251

The equations of the system are

Ddfjdt = — Bp A,69
z=(1—f) (1+ 6f) A,70

p (K, + Ax — C/8) = CNFT’ (1 + kCN/6W) A,71
W, vdo/dx = Ap A, 72

W, = W + }kCN A,73

dN/dt = dz/dt — Sp/C (FT')} A,74
= g o A5

Eliminating p from A,69 and A,74 and integrating,

N =z + {SD (f_fN)/BCFivl A76
where

%= 77 AT

It is convenient to write, as in Section A.05,

¥ — { SD/BCF* A,78
N=z—¥(,— ) A79

‘Then A,76 becomes

Inspection of a.number of accurate solutions has shown that it is sufficiently accurate to take
w=1(1+3yT) A,80

v = AD (f, — f)/8W, A8l

This holds from shot-start to all-burnt. It is sufficient to take for W, over any interval the
mean of the values of W, at the ends of the interval.
From A,69 and A)75,

From A,69 and A,72,

NT' = (NT'), + z— 2, — }(y— 1) W2%/CF + y¥ (f —£.) v A,82

"= L

Since N = =z at nozzle-start, and Ty’ is accurately unity if px <p, and never far from unity under
any conditions,

where

NT =z —}(y— 1) W, o?/CF + v¥ (f — £)) v,
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which. with A,79 reduces to
T+ Gx—DY(fx — vl =2—%(y—1) W?CF A83

(v — 1)/vs = yv,/T" — /v,

Equation A,83 holds after the opening of the nozzle. If the shot starts first, A,83 is used,
until the nozzle opens, with ¥ = 0.

We need also a relation between the shot-travel and the fraction of charge burnt.
Eliminating p and v from A,71, 72 and 81, and integrating,

Adx M [ (fo—f)df
K.,—[—Ax—C/S:__f N A4

where

where M is practically (AD/ B)?/FCW,, the ballistic parameter for orthodox guns (equation 8,08)
and v, is a mean value of

This result is true whether shot-start occurs before or after the opening of the nozzle.
We must now, however, distinguish between these two cases.

CASE A : In< Py
In this case N is given by A,79 for the whole of the period of motion of the shot.
Substituting into A,84 and integrating from shot-start onwards,
In[1 4+ Ax/(K, — C/3)] = MI/y, A85

where

e (fo—S)df
I_fj 2—Y(fy—fw

In the integrand v, is a function of T’, and to make progress one must average v,. We find
that, writing the average value of ¥/v, as (,

for 6 £ 0 o
I =5 1 é{;; @gf o) |:tanh—‘ O(f) — tanh—! Q( f[,)] A,86

where

O(f) =1—Qf, + (0 + Q— 1)/ — 072
O(f) = [20/ — 6 — Q + 1] [46 (1 — Qf) + (6 + @ — 1

This is true only if ©(f) and O(f,) are less than unity. If either is greater than unity,
the corresponding tanh—! should be replaced by coth—.

For 6 =0,
fo—f _¥(f) @'(f)
ST T a0 ) A87
where O(f) =1—Qf - (Q-—1)f

ie. ®(f) with 8 = 0.
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We have found that pressures correct to a few per cent. can be obtained by taking
1 —v,=50(1—T")*(T"—078)/[1 + 2:5(1 —T"))] A;88
Q =2¥/38/T" — 1) A89

The fact that v, is greater than unity for T’ less than 0-78 is due to Q being least accurate
in this region. The pair of formulae, A,88 and A,89, have been chosen to compensate for each
other’s deficiencies even at these low temperatures. The integral I becomes infinite for = 1
and correspondingly sensitive to  if Q is near unity. This approximate method is unreliable
for Q greater than 0'8. In such cases the pressure-space curve is very flat and it is better to
integrate A,72 in large steps, using A,81 and mean values of p ; one finds x thereby, and
hence p from A,71, correcting the integration if necessary. This is much simpler than carrying
out the numerical integration of the full set of equations, though the process is of course restricted
to flattish pressure-space curves. The process was suggested by Mr. T. Vickers.

CASE B : P> P,
Before the opening of the nozzle N = 2, and so

In[1 + Ax/(K, — C/8)] = (M/v,) I (Q = 0) A,90

After nozzle-opening N is taken from A,79 and
K, — C/8 + Ax M_I

In =I5+ Aen — A9l
h
o = [ Yo
s A=Y (i —w
This integral can be evaluated :
for 6 54 0,
J= l (;((? f (fo) [tanh ' O(f) — tanh—! O( f“):l A92
and for 6 = 0,
L= 0G| U) aos

=T —g=—ap"™ o)

with the usual caution about the replacement of tanh—! by coth—! if the argument is greater
than unity.

We give now a summary of the use of these equations. We have introduced various mean
values such as Q and the v’s, and we shall give rules for their estimation. These were derived
by analysis of a number of accurate solutions for various initial conditions, and it is not suggested
that they are the only rules which will work. However, these formulae are simple, and our
experience has shown that pressures, velocities and shot-travels can be computed in this way
to within two or three per cent. This is sufficiently accurate for routine ballistic calculations,
being usually less than the error arising from uncertainties in the nozzle-start and shot-start
pressures.
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CASE A @ p <P,

Solution at nozzle-start
Equation A,71 with p = pn, T' =1 and ¥ = 0 gives N, = 2n. From A,70 we derive f,.

Solution at shot-start
We guess T,. A,71 with p = p, and x = 0 gives N,. Calculating v; from A,80, 2,
and f, follow from A,70 and A,79. We take, in this part of the computation,

vy =1—6(1—T)f2+ 105 (1 — T')) A94

and obtain T, from A,83 with v = 0. The process is now repeated until a self-consistent
set of values is reached.

Solution for any desired f less than f,
We guess T’ at this value of f. In succession we obtain v, from A,80, z from A,70, N from
A,79 and v from A,81. We estimate v, here as

v, = 1.75T" — 075 A95

and then T” can be calculated from A,83. We repeat until the results are self-consistent.
To calculate the corresponding shot-travel we use A,88, 89 and 85, with elther A,86 or
87. The pressure can now be calculated from A,71.

Maximum pressure
By calculating the pressure at three or four evenly-spaced values of f, the maximum pressure
can be found by interpolation.

CASE B : px>po

Solution at shot-start
Equation A,71 withp = p,, x = 0and T’ = 1 gives z, = N,, and f, follows from A,70.

Solution at nozzle-start

We guess fy, obtaining v from A,81, 2z = N from A,70, T’ from A,83 with ¥ = 0, and
x from A,90 with v, from A,88. The pressure can now be calculated from A,71. We repeat
with other values of f and interpolate for p = p,.

Solution after nozzle-start
The only difference from the procedure in case A is that A,92 and A,93 replace A,86 and
A87.

A.08. Solution after all-burnt

This is so much simpler than the problem during burning that an approximate analytical
solution can be derived by modifying the method used for the same period in the orthodox gun.
From the exact equations, in reduced units, we have, neglecting kCN/6W,

d(NT") Hd
NT ~—  1+E—bCN/K,

A96
where

H=v—1+ yud (T)}/(d/dv) A97
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Let suffix , denote conditions at all-burnt. We can integrate A,96 by taking mean values of
H and N, giving

NT' — 1+4+E—bCN/K,
| =HI — A, 98
% (NTY, % 1+t CN/K,
We can write A,96 in the alternative form
dNT" Hﬂg—g » HW, d¢ a%
dt dx~  C drv de?
leading to 3
(dg/dx)? — (dE/dr),? = 2C{(NT’), — NT" }/HWl A99
Finally,
N, — N = g [ (D) ds = i (T) (e — (@) A,100

From these equations can be calculated close approximations to the conditions at any desired
travel after all-burnt, and in particular the muzzle velocity is easily derived. The detailed
working runs thus. We know &, T, (d€/dr), and N,, from which we compute H,, We
guess (T')}, dE/dr and N at the assigned value of £ ; H follows from A,97, and we take

ﬁ=f(H2+H)
ﬁ=%(N2+N)

then obtaining NT' from A,98. We calculate W, from N, and then find d%/dr from A,99.
Finally N is obtained from A,100, using the mean value

(T)Y? =3 [(T) + ()

The cycle is repeated until self-consistent. The number of cycles necessary depends on the
success of the first guess but is normally of order two.

Errors in dE/dv, N and T’ in a typical calculation of this type for a fully recoilless gun
were found to be 0-2, —4 and —16 per cent., respectively, of the change from all-burnt to shot-
ejection, i.e., about 0-1, —2 and —5 per cent., respectively, of the values at ejection. The error
in muzzle velocity is only a few feet per second, which is usually a trivial price to pay for the
reduction of computation effected by this method.

The shape of the pressure-space curve during the adiabatic expansion, which in ordinary

guns is determined by y — 1, is settled here by the quantity H. For a typical recoilless gun H
is of order 2, whereas y — 1 is only about 0-3 ; hence after all-burnt the pressure-space curve
falls much more rapidly than in an orthodox gun.

The process of successive approximations given above fails to converge if the expansion
goes so far that almost all the gas passes through the vent before the shot reaches the muzzle.
In such cases the change in H from all-burnt to ejection is so large that it is not possible to
reach the muzzle in one step of computation. There is no reason, however, why one should
not divide the process into several steps, each taking as its initial conditions the final results
of the previous step. While expansion down to almost zero pressure and temperature is an
inefficient way of using a gun, it does occur in practice in low-velocity rounds from a recoilless
howitzer, such as that shown in Fig. A.1. 'When such a gun, giving about 1000 f/s. at top charge,
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is fired at a velocity of order 400 f/s., we have the following circumstances : to be sure of
starting the shot, the peak pressure must be of order 4 tons/sq. in. ; therefore, to keep down
the muzzle velocity to 400 f/s. the charge must burn out very rapidly ; hence there is a long
travel after all-burnt, during which T’ falls greatly ; because d%/dx is small, H is large at
all-burnt ; because (T')* is small when the shot reaches the muzzle, H is then small ; hence
this is a case where H varies greatly between all-burnt and ejection, and this interval must be
broken into two or three steps. Of course the muzzle velocity can in such cases be estimated

from A,99 with NT’ = 0, provided again that one can estimate H. If the gain in energy

of the shot after all-burnt is sufﬁciently small the uncertainty in H will lead to an uncertainty
in the muzzle velocity which is adequate for many purposes. It should be remembered that
such low-velocity results are very sensitive to the initial conditions assumed in the calculations,
so that analysis of such firings is at best a tricky business.

The formulae of this section are useful when it is proposed to vent the gun near the muzzle.
This has been suggested, from time to time, as a cure for various difficulties. The effect on
muzzle velocity can be found by the formulae given above, taking the initial conditions to be
those computed by orthodox ballistics for the shot-position at which venting starts. Questions
involving the smooth-bore muzzle-extension can be treated in the same way.

A.09. Gas leakage in a smooth-bore mortar

To study this problem it is desirable to start by combining all mortars in a general formula.
The loss of muzzle velocity Av; due to a leakage area S, constant during travel of the bomb,
is given by A,61 as

Av,fv; = — n¥ = — nySD/BCA} A,101

where n varies somewhat with the details of gun and charge, but is usually around 0-7.
Furthermore,

AD = mpWu,
with m around 0-8-—-0-9. Also
C=gq(y—1) Wo,s/a
where ¢ depends a little on the details of the ballistics. To sum up, A,101 yields
Av; = —cS/A A,102

where ¢ is of order 2000 f/s., and varies with the propellant used and with such matters as the
expansion ratios at all-burnt and ejection. The possible variation in ¢ is a factor of two to one,
if all its constituent factors are given their extreme values. Experience suggests that the
differences between types of mortar are smaller than the variety existing in other types of artillery.
For many purposes ¢ can be taken to be the same for all mortars.

When the bore area A remains unaltered and it is the diameter of the bomb which is reduced
to create the leakage area S, the accelerating force on the bomb (at equal pressures) falls in the
ratio (A— S)/A. This causes a further drop in velocity, which is approximately v,S/2A and
may be regarded as included in A,102 if ¢ is allowed to depend on velocity. Since the leakage
¢ is much larger than {z;, ¢ is only a slowly varying function of velocity, and the ratio AAz,/S
is predicted to be practically the same for all mortars. This is a most useful result.
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An 8-cm. mortar may be taken as an example. It was assumed that ¢ = 0-55, that is,
the leakage was taken to be 17 per cent. less than the theoretical value for no friction. This,
it will appear, is a fairly good estimate of the resistance to flow past the guide-band of the bomb.

For a typical ballistic solution for this mortar, ¢ was found to be 2500 f/s. Let us write
A,102 in another form. Let d be the calibre of the mortar, and Ad the clearance, on diameter,
between the bomb and the mortar. Then

Av, = — 2cAd)d A,103

A value of ¢ = 2500 f/s., is seen from A,101 to be reasonable if z is about unity. For this

mortar
Av,/Ad = 1-57 {/s. per thousandth of an inch A, 104

This is a convenient unit for practical calculations. Suppose that our bombs have a mean
deviation in diameter of 0-002 in. ; assuming a rectangular frequency distribution, which is a
fair approximation, this mean deviation corresponds to a total tolerance of 0-008 in. on the
diameter. This gives a mean deviation in velocity of 3-1 f/s., which is a substantial part of the
observed mean deviation.

There is some experimental evidence to check these results. Statistical analyses have been
made of firings in 6-cm., 8-cm., and 10-5-cm. mortars. It is convenient to reduce the observed
rate of change of velocity with bomb-diameter to what it would be in a calibre of 8 cm., for
comparison with A,104. The 10-5-cm. trials gave 1:54 f/s. per thousandth. Firings in an
8-cm. mortar gave 1-7 f/s. per thousandth. Finally, results for a 6-cm. mortar, due to Vinti,
have given a mean value of 16 f/s. per thousandth. These three sets of results are in excellent
agreement with each other and with the theoretical result, showing that the coefficient ¢ of
A,102 and A,103 is indeed insensitive to the details of the internal ballistics. That it is little
altered by changes in muzzle velocity, within the practical range for mortars, has been verified
by computation, and is supported by the experimental results in the 6-cm. mortar with its five
standard charges : the results were 1-3, 1-65, 1-8, 1:7, and 1-4 f/s. per thousandth in which
no significant trend can be seen.

A.10. The ballistics of a worn gun

In a gun firing separate-loading ammunition, the gradual wearing of the gun is reflected
in an increased length of ramming. The ballistic effects are due to the extra chamber capacity
and a rather smaller engraving resistance. Gas leakage is very small, and the drop of ballistics
in a worn gun can be calculated quite well from the two effects mentioned.

When the gun fires fixed ammunition, the situation is quite different. The wear on the gun
does not alter the position at which the shot starts its motion, since this is fixed by the cartridge
case, but the length of free run-up is increased. This may be as much as three calibres in a
badly worn gun. During this run-up there is considerable leakage of gas between the shot and
the walls of the gun. The peak pressure and muzzle velocity fall.

The loss of ballistics as a gun wears is also due in part to the loss of initial resistance and
to the enlargement of chamber capacity. It is possible to separate these effects, given enough
experimental data in new and old guns, and the theory can be checked if experimental projectiles
can be made which will stop the leakage even in the worn gun. An analysis has been carried
out on these lines,* with rather incomplete data, and it is hoped that it will be possible to repeat
the analysis for the more accurate data now available. Here we shall mention only the theoretical
machinery which is used.

* Corner, Vickers and Ware, A.R.D. Theoretical Research Report 26/45 ; AC 8926/BAL 301.
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The equations are substantially the same as in Section A.04. One difference is that the
pressure to be used in the leakage is the pressure at the base of the shot, which is derived from
the breech pressure by the usual Lagrange factor. The leakage area S is now a function of
travel, being obtained in any particular example from the dimensions of band and gun. Bore
resistance and engraving resistance are practically essential in the treatment, but they make only
obvious changes in the equations.

It would lead us rather far afield to discuss the analysis in detail. It will be enough to
say that the requirement to fit the data on both new and worn guns, without change in
the assumptions about the nature of the bore resistance, is quite stringent, and appears to
restrict the degree of arbitrariness which is usually apparent in such matters.
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Fig. A3

Fig. A.3 shows pressure-space curves typical of those calculated for a new gun (without
leakage) and a worn gun (with and without leakage). In Fig. A.4 is given the development
of the leakage with travel, in a gun which had been eroded by a hot cordite. The fairly marked
effects on the pressure-space curve by leakage are produced by a total loss of gas which amounts
to no more than one per cent. of the total charge. All but four per cent. of this leakage occurs
during the free run-up of 2-7 calibres. The effects of leakage are magnified by the time at
which they occur, at the very start of motion, which is the most critical period of the whole
process. Since the effect can be simulated by a lower rate of burning during this time, it is
possible to cover the gradual wearing of the gun by an increasing central ballistic parameter,
which at the same time takes into account the loss of ballistics due to the delaying of the engraving.
This last is an important factor in the striking differences between the new-gun and worn-gun
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curves. The theoretical results show that the drop of muzzle velocity in this gun is divisible
between loss of initial resistance, gas leakage, and changes of internal dimensions, in the
proportions of 65 : 20 : 15, roughly.
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A.l11. Recoillessness

We turn now to an important kind of leaking gun, the recoilless gun. Two kinds of
recoillessness are possible :—

(a) If the flow out of the nozzle begins at the same time as the shot starts and there is
no resistance to motion afterwards, then it is possible to find a nozzle throat area
which gives zero resultant force on the gun at all times during the firing, including
the post-ejection period.

(b) If the flow through the nozzle is established at a pressure different from the shot-
start pressure, then only a more restricted recoillessness can be achieved. Suppose,
for example, that the gas flow starts before the shot moves. It is obvious
that until the shot starts there is a resultant forward thrust on the gun. To get
zero momentum of the gun after the firing is over, there must be a resultant backward
thrust while the shot is in motion. The zero final momentum means a negligible
total movement, since the forces last for only a short time. This state of affairs
would be described in trials reports as recoillessness ; it is clear, nevertheless,
that the carriage would have to withstand large impulsive forces.

Recoillessness of type (a) is obviously a very special case, implying a particular form of
resistance to motion as well as a certain suitable choice of bursting-disc. However, it can
be approached sufficiently nearly, for all practical purposes, to justify our separating such
cases into a separate class.
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Both types of recoillessness are considered here. Case (b) 1s by far the more common.

The stress on the carriage depends on whether this is rigidly attached to the ground.
If it is so attached, for example, by spades, then the whole of the momentary thrust on the gun
is transmitted to the carriage. If, on the other hand, the carriage is free to move, only a part
of the thrust appears at the gun-carriage junction ; the rest is used in acceleration of the piece
itself. A carriage weighing as much as the piece would receive half of the resultant thrust on
the piece.

The ballistic properties of a recoilless gun depend quite strongly on the relation between
nozzle-start and shot-start pressures. It is useful, therefore, to be able to detect whether one
is working in region (a) or (b), and in the latter case to say which pressure is the larger.

Now, if a certain gun has been adjusted to be recoilless at normal charge, with nozzle opening
before the shot starts, then, if fired with a smaller charge of the same propellant, the gun will
move forward. This is quite obvious, since in the latter case the period during which px <p <p,,
in which therefore the system is acting as a rocket, is longer than before. This is the simplest
practical test for the relative timing of nozzle-opening and shot-start. The gun movements
to be expected are not very large—an inch or two if mounted on a rubber-tyred carriage on
smooth ground.

A.12. The calculation of recoil momentum

When the shot is rigidly held in the shot-seating, the thrust forward on the gun is, by the
theory of Section A.03, {Sp where the dimensionless thrust coefficient { = P/p,S; has been
tabulated in Table A.1. When the shot is free to move along the bore the thrust on the gun
falls by Ap, reducing the net forward thrust to ({S — A)p ; writing u = S/A, this thrust is
(T —DAp.

The coefficient { depends on the y of the propellant gases and, more strongly, on the
expansion ratio of the nozzle used. These characteristics of propellant and gun are effectively
constant during the firing. The coefficient  has also a small dependence on ¢, the parameter
measuring the co-volume effect :

e = bp/(1 — bp)

For the most accurate work, this dependence on ¢ can be taken into account by using a { which
is a function of time, perhaps in the form of different mean ¥ in various parts of the solution.
In the formulae which follow we shall not explicitly distinguish the various Z.

We have, for the total backward momentum of the gun at shot-ejection,

t L,
A — )| pat — aut[ pa
t, 1y
For all solutions of good ballistic regularity, all-burnt occurs before shot-ejection, and

we can take the system after shot-ejection as a reservoir of gas exhausting through nozzles in
parallel, of throat areas S and A. By Hugoniot’s theory, we have

p = (CN,RT,/K,) (1 + 1/Q,) 2D

where t is mecasured from shot ejection, K; is the total internal volume of the gun, and

o 2 Ky [Ty ))Ee
1 ﬁY-——l .‘XTS YR'I‘“‘
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These formulae neglect the effect of co-volume. The gain in backward momentum after
shot-ejection is

@ L i B—y)/2(y—1)
A1 —p?) f pdt = (1 —p¥) CN, [Rgs] [Y;L I:I A,105
0

1+

The function of y which occurs in A,105 is equal to 1-34 within 3 per cent. for all Service
propellants.

It is convenient to write the total momentum of the gun after firing as Wy, where v,
is a wvirtual shot velocity. For a gun with exactly-balanced recoil v, is zero. From the
formulae above,

Al —ul 1-34CN(RT,]  Apl (™
oAU [y IHONBTY]_ bt v, Ados
In terms of the reduced units introduced in Section A.06,
Wo, |: T3 134N, \/T_,,] J‘
—_—— = (1 — Id Id A,107
CyRTy) ~ (=0 [ | Md+ ke *

’ T.
Up to all-burnt in a numerical integration, ? IIdr can be found by a summation, since

To

increments of this quantity appear in the computation.
After all-burnt,

" = = (W,/C) [(d&/dv), — (dE/dv),]

T2

When the quicker method of Section A.07 is used, the virtual shot velocity can be calculated
from

Wop = (1 — ul) [Wl'vz + er (v; — vz) + 1:34CN; (RTJ)*/(I + )]
— pL (AD/B) (fx — fo) A,108

where W, is the mean W, from shot-start to all-burnt and W,’ that from all-burnt to shot-ejection.
Both occur in the ballistic solution itself.

If a bore-resistance, depending on travel, is preferred to an instantaneous collapse of the
shot-start pressure, the formulae of this Section must be rewritten, but the changes to be made
are quite obvious.

A.13. The high-low pressure gun

The lethal effect of a projectile of given weight is often increased if we can design it fora low
maximum pressure. For example, this holds for high-explosive shell against unprotected troops.
Likewise the effect of a hollow-charge against armour is not strongly dependent on the weight of
the walls, so that a given penetration can be achieved with a lighter projectile if the maximum
pressure can be lowered ; this means a lower muzzle energy and a lighter gun. A low peak
pressure may also lower the piece weight for given muzzle energy, depending, however, on just
how this lower peak pressure is obtained.
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Low-pressure weapons show difficulties of ignition, presumably because the pressure
builds up so slowly, and the round-to-round variations are apt to be large.

A notable advance in low-pressure guns was made during the war by German engineers.
The front of the cartridge case was closed by a plate pierced by one or several nozzles, usually
in the form of plain holes. By choice of the nozzle area the pressure in the chamber was kept
considerably higher than in the bore. The projectile was exposed to only a low pressure ;
the bore had to be of the same length as in an ordinary low-pressure gun ; the important point
18 that the cordite burned under a pressure two or three times thac in the bore, and ignition
and regularity were claimed to be improved. Finally, another advantage was that the volume
of the cartridge case was reduced. The plate carrying the nozzles was an integral part of the
cartridge case, and could be used several times.

To sum up, the “ Hoch-und-niederdruck Kanone ” is claimed to have the following
advantages over the orthodox gun of equal muzzle energy and peak bore pressure : better
regularity ; smaller cartridge. The breech is heavier in the high-low pressure gun, and
the piece is slightly heavier.

Claims that the H-L principle gives a lighter gun are true only in a restricted sense. What
is true is that (i) if the target effect of the projectile is improved (per unit total weight of projectile)
by a light construction, and (ii) if the gun is to be accurate, and (iii) if we can tolerate the large
bore volumes made necessary by a low working pressure, then the H-L gun will be lighter
than an ordinary high-pressure gun, and more accurate than an orthodox low-pressure gun.

We shall now give a simple theory of the internal ballistics of the H-L gun, of essentially
the same order of accuracy as Crow’s method (Section 9.08).

A.14. Notation and assumptions

The gun can be idealised to the form shown in Fig. A.5. Let the projectile and charge
weights be W and C. The charge is contained in the first chamber of volume K and before
the shot moves the total volume behind it is K 4+ K,. Let S be the throat area of the venturi
or nozzles connecting the two chambers, and A the bore area.

BREECH
0 SHOT BORE
PROPELLANT 9]
SPACE o

8]

Fig. A.5

Let P be the pressure in the main chamber, assumed uniform throughout the chamber,
and let p be the space-mean pressure in the bore and second chamber. We write v for the
shot velocity at travel x.

L.et Cz be the amount of cordite burnt up to time ¢, and let CN be the amount of gas in
the first chamber at that time.

We assume the form-function

a=1—f A,109



APPENDIX I 263

The common shapes, tube, slotted-tube, ribbon, and multi-tube, have form-factors 6
sufficiently near zero to make successful analysis possible with 6 = 0. Only for cord is A,109
inadequate. This case is left as an exercise for the reader.

We assume the conventional Lagrange correction, which ought to be little, if any, more
wrong than in an orthodox gun. Hence .

w, dv/dt = Ap A 110

where w, =W+ 1C Alll
We assume a rate of burning proportional to pressure, that is,

Ddf/dt = — pP A112

We adopt the isothermal approximation, in which a mean temperature of the propellant
gases is assumed throughout the period of burning of the charge. Let the corresponding
force-constant be A. This applies throughout both chambers and bore and we neglect the
small regions near the venturi where other conditions hold.

We represent the initial resistance to motion of the shot by a change of effective rate of
burning. The rate § is the adjusted rate. It will be seen that in this and the preceding
assumption we are following Crow’s method (Section 9.08). This is chiefly to make more
obvious the relation to orthodox guns, but it also leads to a great saving of labour.

The pressures at inlet and exit of the nozzle are P and p as near as matters. If

PP <[2/(y + 1]J0=D A113

then the rate of flow is settled by P alone. This is a familiar result in the one-dimensional
theory of nozzles. There should, as a matter of fact, be a co-volume correction to this critical
ratio, the magnitude of which has been worked out by Rateau and discussed in Section A.02.
The correction amounts to about 7 per cent. for y = 125 and P = 25 tons/sq. in. For this
value of v, the condition A,113 is p/P <0-555.

The co-volume also alters the rate of flow at a given pressure ; it can be shown that the
error is less than 7 per cent. for pressures up to 25 tons/sq. in. Thus we shall omit co-volume
effects on the flow between the two chambers, but not the direct effect on the equation of state.

For P and p satisfying A,113, the rate of flow is

YSP/y/2 A, 114

where ¢ is a numerical factor which depends on y but lies within 1 per cent. of 0-66 for all
Service propellants. A correction for friction and heat losses in the nozzle should be included
in  ; a5 per cent. reduction, which is reasonable, makes ¢ about 0-63.

If p/P is greater than the limit mentioned in A,113, the rate of flow is, for y == 1-25,

(SP/v/A) (p/P)* [1 -~ (p/P)"?]* ALL5

where x 1s 3-162 for y = 125 and no friction losses. With allowance for friction one may take
x == 3:00. Another way to express the difference between A,115 and A,114 is by their ratio,
which can be regarded as the factor representing the effect of back-pressure on the flow.
Table A.2 shows some typical values, and will be found useful in approximate calculations when
p/P exceeds 0-55.
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Table A.2. The back-pressure factor

p/P Factor p/P Factor
0-56 1 0-94 0-507
0-6 0-995 0-96 0-419
0-7 0-948 0-98 0-300
0-8 0-840 0-99 0-214
0-85 0-755 0-997 0-117
09 0-638 1 0

We shall assume that p/P remains throughout at less than the critical value A,113. The
great simplicity which this introduces into the mathematics will be seen later. This assumption
seems to be always obeyed in the practical examples produced up to now.

We assume that no unburnt cordite passes the nozzle. This is probably true in the later
types of H-L guns with a number of small nozzles in parallel between the two chambers. With
normal ignition no appreciable error is expected from this assumption.

A.15. Equations of internal ballistics, up to all-burnt
THE FIRST CHAMBER
The equation of state for the gas in the first chamber is

P [K — C (1 — z)/5 — CNb] = CNx A,116

and for that in the second chamber and bore is

P[Ko+Ax —C (2 —N) b =Cxr(z —N) All17
Also
dN/dt = dz/dt — {SP/Cr/\ All8
= [B/D — ¢S/Cy/A] P A119
since
dz/dt = BP/D A,120
Hence
N=(1—-Y)=z _ A121
where
¥ = {SD/BCy/A . A,122

The dimensionless parameter ¥ was found to play a fundamental part in the ballistics
of recoilless guns, where S was the throat area of the venturi in the breech ; ¥ plays an equally
important part in the theory of H-L guns, for which it is of order 0-5.

Substituting from A,121 into A,116, we have

Cr(1—¥)z =P[K — (1 —2) C/d — (1 — V) Czb]

—~P[K—C/5—(1—Y¥)Cz{b—1/3(1 —¥)}] A,123
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Thus the pressure builds up in the first chamber as if it were a closed vessel with charge

C (1 — ¥), co-volume b, density § (1 — ¥'), and web-size D.*
From A,120 and A,123,
dz/dt = pz/(1 + Ba)
where w=BCr(1—Y¥)/D(K—C/s)
and B=C[l/d—b(1 — lI")]/(K.— C/3)

Note that B may have either sign.
Taking the origin of time when 2 = 1, the solution of A,124 is

ut =Inz—B(1 —2)
The pressure in the first chamber is

cA(1—Y) =
K—C/5 1+ Bz

P =

whose maximum value occurs at all-burnt and is

Cr (1 —W) A1 —Y)

P =K—CI+B " K—(1—Y)Ch

THE SECOND CHAMBER AND BORE

The equations for the second chamber and the bore are simply

w, dv/dt = Ap
and p = CnY/(K, + Ax — C¥b2)
Hence

dv ACA\Y¥Y(1 + B2)

dz ~ wp (K, + Ax — C¥h2)

If K, is not zero, then for small z

p = Cha¥/K, and P = Ciz(l — ¥)/(K — C/3)

so that initially
p/P = ¥(K — C[3)/K (1 —¥)

Returning to A,132, we write, in general

X = (Ko + Ax) (/A) (,/C2¥)}

A,124
A,125
A,126

A,127

A128

A,129

A,130
A,131

A,132

A,133

A 134

* ¢f. equation 5,05.

T
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which with A,132 leads to

d z dX 1 + Bz
dz [1+Bzd?:|=x—vz A3
where v = (ub/A) (w,C¥/2)} A,136

The constants B and v will both be small. It is easy to show that v is roughly 25/,
where p is the space-mean pressure on the shot up to all-burnt. For a gun working at 5 = 8
tons/sq. in., which is not likely to be exceeded in H-L guns, v is less than 0-3. The value of
B increases with the density of loading, and for a density of loading of 0-8 gm./c.c. the limits
of B are —0-6 and +1. For practical values of ¥ the range of B is —0-5 to +0-5.
We may expect, therefore, that for H-L guns B will usually be small but larger than v.

Generally, the integration of A,135 is best effected numerically.  The boundary
conditions are, 2dX/dz = 0 and X = X, when 2z = 0.

The pressure, velocity and shot-travel at any value of z between 0 and 1 are, respectively,

p = (w/A) (@, CYF) /(X /z — v) A137
v = (CAV/w) )tz (dX/dz)/(1 + Bz) A,138
x = (CAY/w, )t (X — X))/ A139
where Xo = (Kou/A) (w,/CAY) A 140

It was found, in the course of the calculation, that X/z generally decreased steadily as
2 approached unity, within the limits of B and v mentioned above. The maximum pressure,
therefore, occurs at all-burnt or so near that the value of the pressure at all-burnt is a sufficiently
good approximation. We are, therefore, interested in the pressure, velocity and shot-travel
at all-burnt only and the results of the calculation can be tabulated quite simply, as in Tables
A3, A4 and AS.

Linear interpolation leads to errors of, in the worst case, 0-002 in X,/(2 4+ X,) and 1 in 400
in (dX/dz),. Other errors can arise from our approximate representation of the computed
results, so that these possible errors should be doubled. This accuracy is ample in view of the
simplifying assumptions made in our theory.

SERIES SOLUTIONS
The general solution of A,135 can be expressed as a power series in 2 as follows : —

X=X, Z 4 [ 3B vxol] I

X, 4X, T 4AX?
(Vxn__ 1)2 vX,—1 B 5B (VXO — 1) ‘B2 ,
+ |: 0X 5 - 36X ,° — 12X} + 18X, + 86X, 234 ... A,141

Unfortunately this series does not converge sufficiently rapidly for general use, but for
X,>:5 the terms given in A,141 yield X and dX/dz sufficiently accurately ; for this reason
values have not been given in the Tables for X,> 3.

When X, = O the solution is

4v? ] 44Bv 19B?

\ 4B .
X =221 - éz + [—'5— - 125 242 4 95 2% + 305 2% 4 0 (Bvz*2) 4 0 (v223) A, 142
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Table A.3

(The coefficient= should be interpolated linearly with respect to X,)

Xo
0 1-000
05 0-964
1 0-928
15 0-894
2 0-861
25 0-830
3 0-801
35 0773
-4 0-747
-45 0-724
5 0-703
-55 0-687
6 0-674
65 0-662
7 0-651
75 0-642
-8 0-634
9 0-621
10 0611
1} 0-604
1} 0-600
1§ 0-600
11 0-602
13 0-609
2 0-618
2} 0-641
3 0-665
3} 0-688
4 0-708
4} 0-726
5 0-743

+0-400 B

+0-355 B

+0-308 B

+0-262 B

+0-239 B

+0-218 B
+0-198 B
+0-181 B
+0-162 B
+0-146 B
+0-132 B
+0-120 B
+0-100 B
+0-084 B
+0-061 B
+0:047 B
+0-037 B
+0-030 B
+0-025 B
+0-021 B

+0-032 B2

+40-030 B2

+0-025 B?

+0-020 B2

+0-016 B2
+0-013 B2
+40-010 B2
+0-007 B?
+0-005 B?
+0-003 B2
+0-002 B2

+0-100 v

+0-095 v

+0-085 v

+0-065 v

+0:045 v
+0-033 v
+0-025 v
+0-015 v
+0-009 v
+0-005 v
+0-002 v

+0-000 v

+0-000 v

+0-05 By

+0-05 By

+0-03 By

+0-01 By’

4001 Bv
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Table A.4
Values of-——-—: ::__ go (% )z
(The coefhicients should be interpolated linearly with respect to X,)
Xo
141 1-425 40515 B —0-081 B2 +0-401 v +0-07 By
13 1-410 +0-542 B +0-378 v
15 1-392 +0-560 B —0-070 B2 +0-350 v +0-125 By
12 1-368 +0-576 B
2 1-344 +0-585 B — 0-054 B? +0-285 v +0-12 Bv
2} 1-322 +0:590 B
24 1-301 +0-593 B —0-034 B? +0-234 v +0-115 By
3 1-264 +0-592 B —0-016 B2 +0-200 v +0:10 By
33 1-234 +0-587 B —0-008 B2 +0:174 v +0-09 Bv
4 1-210 +0-580 B —0-000 B2 +0-152 v +0-08 By
43 " 1191 +0-135 v
5 1-175 +0-564 B +0:037 B2 +0-123 v +0-05 Bv
Table A.5
Values of iTB +1 B (% )2
(The coefficients should be interpolated linearly with respect to X,)
XO

0 1-000 +0-217 B —0-070 B2 +0-210 v +0-00 By

-05 1-018

1 1-027 +0-226 B +0-235 v

‘15 1-029

-2 1-025 +0-234 B 4+0-253 v

25 1-015

3 1:000 +0-241 B +0-264 v

-4 0-965 +0-247 B +0-268 v

5 0-924 +0-251 B —0-056 B2 +0-265 v +0-01 By

6 0-881 +0-253 B +0-257 v

7 0-837 +0-254 B +0-247 v

-8 0-795 -+0-253 B +0-233 v

9 0-754 +0-252 B +0-220 v
1-0 0-715 +0-249 B —0-042 B? +0-03 Bv
141 0-678 +0245 B +0-191 v
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A.16. Internal ballistics after all-burnt

So long as p/P <0-555, the gas flow from the first chamber is the same as if p were zero,
and the rate of decay of pressure P is given by Hugoniot’s theory with Rateau’s corrections
for co-volume (¢f. A.R.D. Ballistics Report 54/43).

It is hoped however, that co-volume corrections to the flow will be negligible in H-L guns.
In such a case,

P =P, (1 + t/Q,)—2—n A,143
and
N =N, (1 + 1/Q,)~%0—) = (1 —¥) (1 + t/Q,)~%—D A 144
where
Q, =2K/(y — 1) ¥ 5/ A 145

The gas in the second chamber and bore also expands adiabatically.
The equations are

. CA(1—N)T"
P= K. T Ax—(1—N)Cb A 46
w, dv/dt = Ap A 147
together with the equation of energy
[CN(y — DIY — (1 —N) T'] = } w, (v* —v,?) A, 148

We have written T" for the ratio of the gas temperature to the mean value which it had during
burning. Differentiating A,148 and using A,146 and A,147 we have

, dN I’ (y—1)(A—=N)T'A dx
T =N =R, FAx—a—N)Cb &
which integrates to
og d=NT =—(y—1) log Ko £ Ax— (1 _'——L) cb A,149
b 4 K, + Ax,— (1 —N) Cb

To obtain the muzzle-velocity, therefore, we guess N for the period after all-burnt, determine
(1 —N)'T" from A,149, and the muzzle velocity from A,148. The mean velocity after
all-burnt gives the epoch of shot-ejection and so, from A,144, the value of N at that instant.
We then verify that our first N was sufficiently accurate.

Finally we insert our value of (1 — N)T" in A,146 and our estimate for the time of
shot-ejection in A,143, and examine whether p/P is still less than 0-555 at the muzzle.

Although A,144 and A,145 apply only if p/P is less than 0-555, the equations A,148 and
A,149 are always true. If p/P is greater than 0-555 for part or all of the period after all-burnt,
¥ in A,145 should be multiplied by an appropriate back-pressure factor from Table A.2.
A, 144 can still be used, as an approximation, with the new and larger value of ¥, when finding

N for the period after all-burnt.

A.17. Summary of the working formulae
In practice one is interested only in certain salient features of the ballistic solution. The
first of these is the peak pressure in the cordite chamber :
Cx (1 —Y)
K—(1—%)Cb

P, = A,129
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where
¥ = ¢SD/BCy/A A122

If p/P is found to be greater than 0-555 for all or part of the time, ¥ is multiplied by an
appropriate back-pressure factor from Table A.2.
We calculate

w = BCA (1 — ¥)/D (K — C/3) A125

and from the initial volume K, of the second chamber we find

X, = (Ko/A) (,/CNF) A,140
where
w, = W + 1C Alll
We work out
' B=C[1/3—b&(1 —W]/(K—C/3) A 126
and v = (ub/A) (w,C¥/N)} A,136

From Tables A.3, 4 and § we obtain X, and (dX/dz),. Then the peak pressure in the bore is
P2 = (u/A) (w,CAY)/(X; — v) A,137
the travel at all-burnt is
x, = (C ?‘\F/wi)' (X, — Xo)/u A,139

and the velocity at all-burnt is

_ (CAYjw)t (dX
V=T g E), A,138

It only remains to find the muzzle velocity. At all-burnt, N, = 1 — ¥. We guess N for
the period from all-burnt to shot-ejection, and calculate (1 — N)T" from

g L= N T (1) log Kot Ax— (=T Cb A,149
¥ K, + Ax,—(1—N)Cb
The muzzle velocity then comes from
032 = 0,2 + 2[Chw, (y — ][V — (1 — N) T"] A148

The mean velocity after all-burnt gives the epoch of shot-ejection and so the value of N at that
time, from

N = (1—¥) (1 + t/Q,)—2—1 A,144
Q, = 2K/(y — 1) {Sy/A A,145

where

N is calculated and, if necessary, the muzzle velocity repeated with this better N.
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The Heating of a Gun Barrel by the Propellant Gases

In theoretical calculations of the internal ballistics of a gun, it is necessary to allow for
the energy lost by the propellant gases, in the form of heat, to the gun itself. It is important,
therefore, to determine this heat-loss precisely : first, in order to estimate its effect on the
calculated ballistics of a gun ; and secondly, to derive the temperatures attained by the barrel.

The objects of this investigation, then, are :—

(a) To determine the magnitude of the total heat-loss to the gun barrel, and its relation

to the final distribution of the energy released by the burning of the charge.

(b) To determine the heat-loss up to any time before ejection of the shot ; the rate
at which the gases lose heat to the barrel is fundamental in adjusting the energy
equation (Résal’s equation) of internal ballistics, to allow for heat losses (see
Chapter VI).

(c) To determine the heat transfer at different positions along the barrel, and the local
temperatures in the barrel ; these are relevant to certain theories on the erosion
of guns.

(d) Having obtained these results theoretically for a selection of numerical cases,
to examine the possibility of deriving corresponding data for any gun, by shorter
empirical methods.

The theoretical investigation resolves itself into two main problems : —

(a) The determination of the conditions governing heat transfer from the propellant
gases to the barrel wall. Heat is transferred mainly by forced convection through
a turbulent boundary layer, and, to make the problem tractable, it was necessary
to adopt certain simplifying assumptions. With these assumptions, it was found
possible to derive the heat transfer, taking some account of both the non-steady
and non-uniform nature of the gas flow.

(b) The solution of the equation of heat conduction inside the gun barrel. 'The
boundary condition at the inner wall follows directly from the results of the first
main problem, and the effect of the outer wall was found to be negligible. The
problem has been solved by a method which is suitable for small-arc computation.

Numerical results could only be compiled in those cases for which detailed solutions of
the internal-ballistics equations were available. Such solutions have been obtained on the
Bush Differential Analyser at Cambridge, neglecting heat losses, and the results have been used
in the following cases : (a) the two-pounder gun model, (b) the 25- -pounder gun, and (c) the
8-inch gun, Mark VIII, with four different charge we1ghts In each of these cases, the heat-
loss to the gun has been completely evaluated.

The total heat-loss to the barrel, up to the time of ejection of the shot, was found to lie
between 4 per cent. and 9 per cent. of the total energy liberated, in all the cases considered.
The heat-loss up to any time was found to be roughly proportional to the distance travelled by
the shot. The maximum temperature attained by the barrel was, in every case, well below
the melting temperature of steel.

It has not been found possible, so far, to derive a really reliable empirical method of
determining the corresponding results for any gun; but the numerical results already obtained
suggest a short method, which, it is thought, will give an estimate of the total heat-loss, certainly
accurate to within 20 per cent.

271
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B.0l. Heat Transfer from the Propellant Gases to the Gun Barrel

During the firing of a gun, heat is transferred from the propellant gases to the barrel
wall, the breech face, and the base of the shot, by forced convection and by radiation. Some
rough calculations showed that the heat transferred by radiation is very much less than that
by forced convection, under conditions of velocity, density, etc., corresponding to mean values
in an average gun. Near the back of the chamber, where the gas velocity is always small,
the effect of radiation may be comparable with the effect of forced convection ; but the total
heat transferred to this region is relatively small, so the heat transfer by radiation has been
completely neglected.

The relative gas velocity over the breech face and the base of the shot is small, and is,
in fact, neglected in the model usually assumed for conditions inside a gun barrel. The
convection of heat to these parts is consequently small also, and has been neglected. Therefore,
in the following account, only forced convection of heat to the walls of the chamber and the
bore is considered.

B.02. Assumptions

The heat transfer from the gases takes place through a thin boundary layer next to the
barrel wall, and the mechanism of transfer depends largely on the Reynolds’ number of the flow.
Let

x  be distance along the barrel from the breech face,

U,, the main-stream gas velocity,

p, the gas density,

@, the gas viscosity.
In the numerical cases considered, the Reynolds’ number, defined as R, = pU,x/y, was found
to lie in the range 105 — 10%°, except very close to the breech face, and except during a very
short time at the commencement of firing.

Initially, the boundary layer is presumably entirely laminar, but, at such high Reynolds’
numbers, there must be a rapid transition to a turbulent boundary layer quite close to the
rear of the chamber. It will therefore be sufficiently accurate to treat the boundary layer as
entirely turbulent at all times and for all positions along the barrel.

The flow in the boundary layer is taken to be equivalent to that along a plane wall. This
is a reasonable assumption if the boundary layer thickness is everywhere small compared with
the diameter of the bore, and its validity can be verified a posteriori by the calculated
boundary-layer thickness.

The corresponding problem of the heat transfer to a rocket casing during firing has been
treated in a paper* which contains an account of the simplifying assumptions necessary to
obtain a theoretical solution of the boundary-layer problem. The most important of these
assumptions is that the gases are treated as incompressible. ~Actually, the main stream density
varies both with position and time, and the large temperature gradient across the boundary
layer implies a correspondingly large density gradient ; but the problem appears to be intractable
when these factors are taken into account, so they have been neglected.

B.03. The state of the propellant gases

As a simple model, the chamber and bore of a gun have been taken to form a right circular
cylinder of uniform cross-section equal to the bore area. In consequence, the length of the
chamber has been modified, so as to retain the true chamber volume.

* G. F. P. Trubridge, F. M. C. Goodspeed and D. M. Clemmow, Theoretical investigations on the transfer
of heat to rocket tubes, A.C.1703/1.B.63.
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The following notation is used throughout this Appendix :—
x,  distance along the barrel,

X(t), position of base of shot at time ¢,
both measured from the breech face ;

U,, the main-stream gas velocity at position x and time ¢ ;
1 g yatp

p,  the mean gas pressure at time ¢,

6, the mean density,

Ty, the mean temperature,
all calculated from the internal-ballistics equations ;

p,  the gas pressure at position x and time ¢,
p, the density,

Te, the temperature ;

b, the co-volume of the gases,

v, the adiabatic constant,

C, the charge mass,

W, the shot mass.

The variations in velocity, pressure, density and temperature of the propellant gases
along a gun barrel have been discussed in many papers,* and the following relations have been
used :—

The gas velocity is proportional to the distance from the breech face, so,

x dX
U=3x B,01
and the variation in pressure along the barrel is given by,
P 1+ § (C/W) '
The density is related to the pressure by the equation,
1 Yoo 1 Y
——b] = ::;—b} B,03
? [P ? P

which, together with B,02, gives the variation in density along the barrel.
Equation B,03 and the equation of state of the gases give the variation in temperature as

T/ Te = (plp) O

This variation in T, is comparatively small, and it is also incorrect initially, for T; must then
be constant along the barrel ; T, has therefore been taken constant along the barrel at all
times, that 1s,

Tg == '—fg B,04

* E. P. Hicks and C. K. Thornhill, Notes on the pressure distribution along a gun barrel, A.C.1660/1.B.59/Gn.92.
See also Chapter VII. :
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The same initial inconsistency applies also to the pressure and density variations, but B,02 and
B,03 are used, since these variations are larger. 'The equation of state is never subsequcntly

used, so the fact that the pressure, density and temperature are not quite consistent with it does
not matter.

B.04. The velocity distribution across the boundary layer
Consider the two-dimensional flow of a viscous incompressible fluid along a plane wall.

Let

x be distance measured along the wall,

y,  distance perpendicular to the wall,

3,  the boundary layer thickness,

U,  the fluid velocity in the boundary layer along the x-axis,

the fluid viscosity,
v = p./p, the kinematic viscosity,
7, the skin friction at the wall.

For the case of steady uniform flow along an infinite plane wall, it can be shownt by dimensional
analysis that the velocity distribution across the boundary layer is of the form,

U = o, ¢(n) B,05
v, = V/(7olp) N =v,y/v

and ¢ is a function to be determined. From an analysis of Blasius’ experimental results for
flow in pipes, it has been deduced (D. I11. page 137) that,

where

@(n) = 87407 B,06

but this formula only holds for Reynolds’ numbers up to about 105%. At higher Reynolds’
numbers much better agreement with experiment is obtained with the theoretically-derived,
logarithmic, velocity distribution. This can be written (D. III. page 150) in the form,

o(n) = 2-495 In (1 + 8:93 7) B,07
The equation of motion of the main stream is,
19p U, U,
5ot TV B,08

and hence the case of steady uniform flow corresponds to zero pressure gradient. When
there is a pressure gradient, the boundary-layer velocity distribution may depend on further
parameters involving the pressure gradient.

This fact was used by Buri to develop a theory of turbulent boundary layers for steady
but non-uniform flows over the range of Reynolds’ numbers in which Blasius’ seventh-root
law can be applied. Using this theory, it can be shown that,

_ 0038 | 8%\ 7
pU,? v j

B,09

t Aerodynamic theory, Vol. 111, Edited W. F. Durand, p. 134. Further references to this volume are
denoted by D.III.

% Modern developments in fluid dynamics, Edited S. Goldstein, pp. 375 and 436. Further references to this
book are denoted by G.
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The skin friction can, however, in this case, be obtained directly from the boundary-layer
momentum integral (see Section B.05) if the velocity distribution across the boundary layer is
known. Assuming U = 874 ¢ n'7, it is found that,

—1s
U2_00396{U'”} B,10

and hence the assumed velocity distribution leads to a reasonably accurate value for the skin
friction. For the flow in guns, U, is proportional to x, but the constant of proportionality varies
with time. The additional problem of boundary-layer growth must therefore be considered.
Though this cannot be done on Buri’s theory, the boundary-layer momentum integral can be
used, if the form of the velocity distribution is known.

It is therefore assumed that the velocity distribution across the boundary layer is of the
same form as that for steady, uniform flow along a plane wall.

B.05. The boundary-layer momentum integral

The boundary-layer momentum integral for turbulent flow along a plane wall is,
(G. page 133),

"—‘—O—SU U)ud 0 8U U)d z)UlﬁU U)d B,11
‘O_Pbx o( — U) )’+ng n( 1 )y+9'$ o( y — U)dy )

Let U = v.e(n) B,12
n = v38/v B,13
and then U, = v,9(n) B,14
After some reduction the momentum integral becomes
U2 U ™
o = e o) et () — [ 9 () dn
do(n)) dn (M

U= s JD ?? (n) dn
dep( d -
KA de;h) ;l B,15

If ¢ and U, are known functions, this is an equation to determine the parameter v,.

At the high Reynolds’ numbers occurring in the gas flow down a gun barrel, it would be
most accurate to use the logarithmic velocity distribution (equation B,07), but the resulting
equation for 7, has no simple solution. Consider, however, the velocity distribution given by,

o (n) = an'" B,16

This generalization of the Blasius power law is suggested by the statement (G. page 340) that
to maintain agreement with experiment at Reynolds’ numbers greater than 10° the index 1/7
in the power law must be taken as 1/8, 1/9, etc., successively. The relevant values of the
constants a and n are derived in Section B.07.
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Using B,16 and substituting U, =—;— %, the momentum integral becomes

1 x? 2 2a3 1 dX a’ x dX oy al o
R il S n e —_— e 3n T —_ . 3n 1L
v X2 dz, =aremrx mt i e S @ T A B,17

The boundary-layer thickness is initially zero, and it remains zero at the breech face. The
boundary conditions on 7, are therefore

t=0,% =0forall x B,18(a)
x =0, =0forall ¢ B,18(b)
and the corresponding solution of equation B,17 is,

n+3 n+3 in+6 t 242

ntd —int6 2nt 3 dX)?
2 X nFI(1) 0Xﬁ+2(1) {Z} dx B,19

T, " X
it va?

In numerical calculations it was convenient to use the following non-dimensional functions :—

E o2 ¥z
(n+3) X"+2('r) {Z} dr
K(t) = o B,20
¥
Xn+2(y) I
, U
and the Reynolds’ number, = B,21
Then, 7, " = K(f) Refa? B,22
and the surface skin friction is given by,
7o = pU,*/a*n,*" B,23

B.06. The heat transmission coefficient

Consider the rate of heat transfer from the propellant gases to the barrel wall.
Let

¢p be the specific heat of the gases at constant pressure,

ke, the thermal conductivity of the gases,

6 = [Cp/ ke, the Prandtl number,

h, the heat transmission coefficient, which is defined as the heat transferred from
the gases to unit area of the wall, in unit time, at unit temperature-difference
between the main gas stream and the wall.

Reynolds’ analogy (G. page 64Y), between the transfer of momentum and heat in turbulent
flow, is assumed to hold, although the conditions for its validity are not strictly satisfied in the
present application. An extension of this analogy, when the Prandtl number ¢ is not equal
to unity, has been derived by von Karmdn (G. page 657). In the present notation, his result
can be written in the form,

T 2 2\
"";lbl — P}_J‘ + s(E’—U—‘) [(a—— 1) + In[1 + 0-83 (6 — 1)]} B,24
'o

To
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But pU, %/t = a*n,2"

and therefore,
h = perU,

ani | ann 45 {(e— 1) + {1 + 083 (s — 1]}

B,25

B.07. Numerical values of the constants a and »

The assumption, that the boundary-layer velocity distribution is of the same form in steady
uniform flow as in the type of accelerated non-uniform flow occurring in guns (Section B.04),
has been used to obtain numerical values of @ and n.

10T,
Loow(?--u}-)
35 —_—t J
. i THE RELATION BETWEEN SKIN-FRICTION AND
w) REYNOLDS NUMBER IN TURBULENT FLOW.
e (bis (@) veroaiy oISTRIBUTION @ (7)« 2495 LoG, [1+8-93n)
'3 & (b) verociTy oisTiBuTION ¢ (q)=12-4 N s
32
31
o
i
29—
28+—r——
o |
27 ‘T-I—M—TW— e e s S
' é 1 é . 7 ,_du::n_: “_.__ —_—

Figure B.1

For steady uniform flow, the boundary-layer momentum integral (equation B,15)
reduces to

.d_x_lM[m () d B.26
d"h*Ul d"h 0 A ’

This can be integrated immediately for the two distributions :—
(1) the power law, ¢(n) = an'", and
(2) the logarithmic law, o(n) = 2-495 In {1 -- 8-93 0} (see D. III pages 147-150).
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In each case a relation is derived between the skin-friction coefficient <,/pU,? and the
Reynolds’ number R..

The calculated Reynolds’ numbers lie in the range 10° — 10° for almost the whole range
of position and time. The values of @ and n were therefore chosen so that the skin friction
derived by the power law should be as near as possible to that arising from the logarithmic
law, over this range of Reynolds’ numbers.

The values,
a =124 n =113 B,27

give a skin friction 7, in error by less than 3 per cent. over the range R. = 10° — 10°, but the
error increases outside this range. These values have been adopted throughout the subsequent
numerical work. Figure B.1 shows log (10%t,/pU,?) plotted against log R., for the logarithmic
law, and for the power law using the fitted values of 2 and n.

B.08. The boundary-layer thickness
From the analysis of Section B.05, the boundary layer thickness 3 is obtained as

n-+1 2n 2
$ — xKnt3 (,)/am R,"3 B,28

The function K(¢) is very stable for all the cases evaluated ; it is initially zero, increases rapidly
towards an asymptotic value, and over most of the shot travel lies between the values 4 and 5,
never exceeding 5. These results are probably true in general.

If the upper value 5 is taken for K(#), and the rather low value 10® for the Reynolds’ number

at the muzzle, then,
d/d -=0-0057 x'd B,29

where d is the bore diameter. For a rather long gun of length 100 calibres, equation B,29
gives a boundary-layer thickness at the muzzle about equal to the bore radius, but such extreme
conditions would not be realized in practice. In actual numerical cases, the calculated
boundary-layer thickness has never exceeded one-half the bore radius, even at the muzzle.

In general, then, the flow in a gun barrel is entirely inlet length flow, and it is reasonable
to regard it as equivalent to flow along a plane wall as far as the boundary layer is concerned.

B.09. Calculation of the heat-transmission coefficient

The determination of the physical properties of the propellant gases requires first a
knowledge of their composition, and this was calculated, for the propellants considered, from
information given in a report by H. H. M. Pike.*

The thermal conductivity and viscosity of the constituent gases are obtainable at low
pressures and temperatures from various sources.t It has been assumed that they are
independent of pressure, and obey Sutherland’s lawt for changes in temperature. Further,
in a gaseous mixture, thermal conductivities and viscosities have been assumed additive according
to the gram-molecular proportions of each constituent. Specific heats at constant pressure
are obtainable for gases at low pressure,$ and these values have been used. In a gaseous mixture,
the specific heats have been assumed additive in proportion to the mass of each component.

* H. H. M. Pike, Thermochemical data for the products of propellant explosions, A.C.1862'1.B.78,
+ International Critical Tables.

Fishenden and Saunders, Calculation of heat transmission.

W. H. McAdams, Heat transmission.

Schack, Goldschmidt and Partridge, Industrial heat transfer.
1 Pike, loc. cit.
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For the two propellants considered, o was calculated to lic between 0-4 and 06 in the
relevant temperature range, whilst for each constituent of the gaseous mixture, o is .much
higher, at least 0-7. This anomaly arises from the relatively-large thermal conductivity of
hydrogen, and raises doubts about this method of deriving o.

But the formula for the heat-transmission coefficient can be written

™ perU,
h= e lan ™ — F@)] o
where
Fle) = —5{(c— 1)+ In[1 + 0-83 (c — 1)]} B,31
as compared with,
h = pcpU,/a%q, 2" B,32

on the simple Reynolds’ analogy (G. page 650).
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The thermal conductivity only occurs through o in the correcting term F(s) which is fairly
small compared with an,'". Thus any possible error in ¢ is not of major importance, so in
calculating &, a mean value has been taken for F(¢), namely 5-3 for Cordite SC and 4-65 for
propellant W. In practice, the correcting term F(s) increased h by about 10—20 per cent.

The values of yu, ¢, etc., have been taken equal to their local values at the main-stream
gas temperature, in calculating A. It would be more accurate to use values appropriate to
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the mean boundary-layer temperature, but this would greatly increase the computation, since
the mean temperature is unknown until the actual wall temperature has been calculated ;
moreover, such temperature corrections would have little effect on the numerical values of
h. Figure B.2 shows the heat transmission coefficients, calculated at different positions along
the barrel, in a typical case.

Since the heat transfer has been investigated on the implicit assumption that the barrel
wall is smooth, a few remarks on wall roughness are appropriate. The rifling in the bore
approximates to a series of shallow, longitudinal grooves, and it is not considered that this
will constitute a rough surface in the hydrodynamical sense ; but the effects of erosion suggest
that it may be necessary to consider the inside of an old gun barrel as a rough surface. The
theoretical problem would then involve a knowledge of its “ equivalent sand-roughness
coefficient ”’ (G. page 380), and this is primarily a matter for experiment.

B.10. Conduction of Heat through the Gun Barrel

The problem requires a solution of the equation of heat conduction, satisfying the appropriate
boundary conditions. One of these is that the barrel temperature is initially the same
everywhere. In the previous section, the heat-transmission coefficient at the inner surface
of the barrel has been determined over the range of time of firing, and from this the boundary
condition at the inner surface can be derived.

Numerical calculations have shown that the penetration of heat into a gun barrel, during
the firing of a single shot in a cold gun, is very small (of order one millimetre), and this makes
possible two approximations :—

(a) The inner surface of the barrel may be treated as part of a plane wall, and heat
flow along the length of the barrel may be neglected.

(b) The barrel may be considered as having no external boundary. The boundary
condition at the outer wall is then replaced by the condition that the barrel
temperature tends to the initial (atmospheric) temperature at great distances from
the inner wall.

B.11. Solution of the heat conduction equation

Consider the conduction of heat inside a plane wall.
Let
be the thermal conductivity of the barrel,
e, the density,
the specific heat per unit mass,
all of which vary with temperature ;

z, the distance measured perpendicular to the wall ;

T(z, t) the barrel temperature,
Tg(2) the temperature of the propellant gases,
h(t), the heat transmission coefhicient.

The equation of heat conduction is then,

T

pls ot

| &

[, 2T
%355 | B,33

=4
2}
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and the boundary conditions are,

t=0, T=0 foralz B,34(a)
=0, —k % =h(Tg—T) B,34(b)
s—= oo, T-=0 B,34(c)

k and p,s have been replaced by mean constant values over the appropriate temperature
range ; this should not introduce any serious error. Dividing up the time interval over which
heat transfer takes place into a number of equal small intervals 3¢, equation B,33 may be replaced
approximately during one of these intervals by

LT _ 44 & (1) + T

where T (2) is the temperature-space distribution at the beginning of the interval, T,(z) is the
temperature-space distribution at the end of the interval, and A=#k/p;s, the mean constant
thermometric conductivity.

Writing ¢ = 2/A8t, this reduces to
o2 -
'a_'z?{T0+T1}=q2{Tu+T1}_292Ta B,35

The boundary conditions become now
(a) To(2) 1s a known function ;

T,
0z

)z =0, —k—2=hy(T, —T,)

3 —> <, Ty—=>0
where &, and T, refer to the beginning of the interval 3¢ ; and

2z

(C) % = 0: —k hl(Tls _Tl)

8—)90, T1‘+0

where &, and Ty, refer to the end of the interval. The conditions () and (¢) combine into the
more useful condition,

h h hy h'T
zzo’ sz_(To_l_Tl):__ OTI:»:_ITRW_*_ OFO: I’Il B,%(a)

t>w, (Ty+ T)—>0 B,36(b)
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The solution of equation B,35 with these boundary conditions is,
T, + T, = qe_"'J. €T o(u)du + qe"f e T (u)du
0 x

hy kg [
quo(O)—i:: T :ggfo e_"'“ro(u)du} B,37

hoTy, + 1Ty | by
h, + kq h

+e™ [ -

1
which determines T)(2) in terms of T'((2) and the conditions governing heat transfer during
the interval.

The practical usefulness of this solution lies in the fact that the integrals can be evaluated
analytically. In fact, the temperature distribution at the beginning of interval number (n + 2)
is obtained in the form

a2y, B.38

Tﬂ(z) = [ao -+ a1(2qz) + ...+ an nl

and the temperature distribution at the end of that interval is then derived from B,37 as

Tyz) =™ [bo + bi(2g2) + . o A bass ((iqj-)n;)l' } B

where
b, — kﬂ;:: i— :;Tu__};z: i :3410 + E%Tq [ao + a, + ... +as] B,40(a)
by, =—a,+ }[a+a + ...+ ail B,40 (b)
b =—ar+ ¥[a— + a + ...+ aa B,40 (c)
b =—an+ 43,1 + ad B,40 (d)
buty =} an B,40 (e)

Starting from the initial temperature Ty(z) = 0, these recurrence relations form the basis
of a simple method of calculating the temperature distribution at the end of any subsequent
interval.

B.12. The effect of an initial discontinuity in the boundary conditions

The solution derived in the last paragraph assumes implicitly that the initial value of A(t)
is always zero, for otherwise the boundary conditions B,36 cannot be satisfied at the beginning
of the first interval. In such circumstances it is not sufficiently accurate to replace the partial
differential equation of heat conduction by the approximate difference equation B,35 over the
first interval. In practice the solution gives an oscillatory temperature-distribution when A
is not initially zero. This difficulty is overcome by fitting an analytical solution of the exact
partial differential equation to the first arc.

For an initial, short time-interval, during which A and T, can be taken to have mean
constant values 3(h, + h;) and }(Ty, + Tj,) respectively, the solution of the heat-conduction
equation is*

Te, + T, 2z (ho-h,)? ho,+h)z h,+h ¥
T, 3=~ =2 {erte| 2% | —exp| Cgptl + ST e[ i 27 1) B

* H. Jeffreys, Operational methods in Mathematical Physics. Cambridge Tract No. 23, p. 69.
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where the complement of the error function is defined as,
erfc (w) = 1 — erf (w) = % J‘ e du B,42

A series of the type B,38 can be fitted to this temperature distribution to provide a starting
point for the small-arc method. In practice, only the first two terms of the series were used.
The expression,

e ¥ [a, + a,(293)] B,43 (a)

with a, = T(0, 3f) B,43 (b)
. hy + k hTe,

and @ =g 7 4y — S B,43 (c)

gives the correct surface temperature and satisfies the boundary conditions B, 36 Moreover,
in a numerical case, it was found to agree quite well with the temperature distribution B 41
and when used as a starting point for the small-arc method, the resulting temperature
distributions were practically non-oscillatory.

B.13. The numerical calculation of temperatures

The temperature distributions in the barrel can be calculated directly from the finite
series derived in the preceding paragraphs, but, in determining heat losses, the complete
temperature distributions are not required. For the rate at which the gases lose heat to the
barrel is A(T; — T), where T here refers to the temperature at the inner surface, which is
given simply by the first coefhicient a, (or b,) of the recurrence relations.

In calculating surface temperatures, the relevant time range was divided, as far as possible,
into about ten intervals. This, it was thought, would give as much accuracy as is needed in
the application of the results,

For each gun, temperatures were calculated at several cross-sections of the barrel. In
general, three positions were chosen in the chamber and about six along the bore, one of which
was always at the commencement of rifling. At positions along the bore, it was assumed that
no heat transfer takes place until the base of the shot passes, at which instant the heat-
transmission coefficient suddenly attains the finite value calculated as in Section B.09.

B.14. The heat loss to the barrel
Having determined the surface temperature of the barrel at different positions along its
length, it is now possible to derive the heat loss completely by integration.

Let X be the initial position of the base of the shot,
Xom, the position of the muzzle,
X(t), the x-co-ordinate of the base of the shot at time ¢,
ts, the time when the base of the shot is at position x,
tm,  the time of ejection of the shot.

Considering only heat losses up to the time of ejection of the shot, the following functions can
now be defined.
(a) H/'(x) is the total heat-loss per unit area at a fixed position (x) along the barrel,
SO

tm
H,'(x) = f (T, — Tyt B,44
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(b) H,'(¢) 1s the total heat-loss per unit time at a fixed time (z) before ejection, so

x(t)

H,(t) =nd| h(T;— T)dx B,45
0
d being the diameter of the bore.
(c) The total heat-loss up to time ¢ is thus,
H, (1) = f ‘Hz’(t)dz = J.‘ nd J‘xh(T, — T)dx dt B,46
0 0 0
(d) The total heat-loss up to the time of ejection (t.) is then,
H — Hy(tw) = f " d f :h(T, — T)dx dt B,47
0
or alternatively, from B,44
H = ndH,(xn) = nd J' M f :'”h('r,_'r)d: dx B,48
o Vi

Numerically, these integrals can all be determined, to a sufficient degree of accuracy, using
Simpson’s rule.

B.15. Numerical Applications

Complete solutions of the equations of internal ballistics have been obtained on the Bush
Differential Analyser at Cambridge, for the cases shown in the following table :—

Maximum
Shot Charge Shot-start chamber Muzzle
Case Gun weight Propellant weight pressure pressure velocity
(kgm.) (kgm.) (kgm./cm.?) | (kgm./cm.?) | (cm./sec.)
A(a) Two- 1-0 SC. 0-72 630 4720 103,900
A(b) pounder slotted 118,300
A(c) model tube 127,350
25-
B 11-83 W.057 0-7938 570 2389 46,650
pounder

C(a) 8-inch, 119-51 SC.205 29-484 290 3393 84,750
C(b) Mark SC.205 24-948 290 2459 75,800
C(o) VIII SC.150 20-412 350 2438 71,750
C(d) SC.103 13-608 440 1836 59,550

The three muzzle velocities for the two-pounder gun are for three different barrel lengths.
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The total energy released by the burning of one gram of propellant has been taken to be
the function (E Te — E %) given in Pike’s report. This is the energy difference between the
resulting gaseous products at the uncooled burning temperature, and the same gases at 300°K.
It is not strictly the actual energy made available by the combustion of the propellant, but it
forms a reasonable standard with which to compare the heat energy lost to the barrel.

B.16. Numerical results

The following table shows the comparison between the heat-loss figures for the three
guns :—

Shot Total K.E. of shot
travel |Equivalent| Total heat-loss H [ at muzzle
Case Gun Propellant C/W to muzzle | chamber | heat-loss | (per cent. of | (per cent. of
(xm — x,) length H total total
(calibres) | (calibres) | (calories) energy) energy)
A(a) Two- SC. 0-7200 36-67 22-69 29,100 4.7 20-7
A(b) pounder slotted 0-7200 55-01 22-69 40,250 6-5 269
A(c) model tube 0-7200 73:32 22-69. 50,500 8-1 31:1
B 25- W.057 0-0671 22.06 4:47 33,700 4.6 41-8
pounder
C(a) 8-inch, SC.205 0-2467 43-32 8:80 1,192,000 4.7 40-3
Mark
VIII

DEVELOPMENT OF HEAT LOSS WITH SHOT TRAVEL.

8-INCH GUN MARK YII

12 _ CHARGE 29-484 KILOGRAMMES. e

121]
_
Halt) o /’/
2
(n'u;: A

DN




286 INTERNAL BALLISTICS

Figure B.3 shows the function H,(?) plotted against the shot-travel co-ordinate X(¢), and
Figure B.4 shows the function H,’(x) plotted against distance x from the rear of the chamber,
both for the case C(a), that of the 8-inch gun, Mark VIII, with charge weight 29-484 kgm.

These curves may be regarded as typical, for their general shape is maintained in all the other
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numerical cases evaluated. Figure B.3 demonstrates that the total heat loss up to any given
time ¢ is roughly proportional to the shot travel (cf. also, numerical figures in the above table
for A(a), (b) and (c)). Figure B.4 demonstrates that the total heat loss per unit area at any
cross-section follows roughly a triangular distribution along the barrel, being approximately
zero at the rear of the chamber and at the muzzle, and having its maximum value, the apex,
at the commencement of rifling.

It is not possible to draw any general conclusions from the figures in the above table, since
the variables, namely propellant, charge/shot-weight ratio, and relative dimensions of the
guns, vary considerably from case to case. It is significant, however, that the percentage
heat-loss lies in the limited range 4—9 per cent. for all these cases, and the outstanding omission,
the combination of low C/W and long barrel, is not of practical importance, except for small-arms.
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The next table shows similar heat-loss figures for the 8-inch gun, Mark VIII, with four

INTERNAL BALLISTICS

different values of the charge/shot-weight ratio C/W.

Total K.E. of
Charge Total heat-loss shot at
Case weight C/wW heat-loss H muzzle
(kgm.) (per cent. of | (per cent. of
(calories) total energy) | total energy)
C(a) 29-484 0-2467 1,192,000 4-68 40-3
C(b) 24-948 0-2088 1,110,000 5-16 38-1
C(c) 20-412 0-1708 1,009,000 5-73 41-7
C(d) 13-608 0-1139 813,000 6-92 43-0

These results are shown graphically in Figures B.5 and B.6. In Figure B.5 the actual
heat-loss H is plotted as an increasing function of C/W, and in Figure B.6, the percentage
heat-loss is plotted as a decreasing function of C/W. These are both s:gmﬁcant results, and
the second relation (Figure B.6), suggests that the heat loss to the barrel becomes relatively
more important as the charge/shot-weight ratio is decreased.

B.17. Empirical formulae

The determination of the total heat-loss has involved the complete solution of the heat-
transmission problem at several cross-sections of the chamber and the bore. So far it has not
been found possible, from the numerical cases treated, to derive an empirical formula which
will give the same result to a good degree of accuracy, without so much computation. If,
however, in Figure B.4, the space distribution of heat-loss were exactly triangular, the total
heat-loss H would be obtained as,

H = } ndxm H,'(x,) B,49

This value of H differs by 0—15 per cent. from the actual calculated values, and except
for the two-pounder gun, it gives an over-estimate. The larger deviations from the calculated
H occur when C/W is small, but, in general, the deviation has not been adequately correlated
with variations in data from case to case. Remembering, however, that the heat-loss itself

is only of order 5 per cent. of the total energy involved, this estimate of H gives a relatively
quick and useful result.

From the figures given in the last table it appears that, for this particular gun, H is very
nearly proportional to 4/(C/W); the ratio H/4/(C/W) varies by less than 2 per cent. over
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the range of values 0-1—0-25 of C/W.* If this result is confirmed for other guns, it provides
a ready method of extending any evaluation of heat loss to cover other values of C/W.

The most useful approximation obtained from the numerical results is that the heat loss
up to any time ¢ is roughly proportional to the shot travel. This is illustrated in Figure B.3,
and similar curves were obtained in all the other cases evaluated. If the heat loss were taken
as strictly proportional to the shot travel, it would be comparatively simple to revise the equations
of internal ballistics to allow for heat losses to the barrel.

B.18. Surface temperatures and heat penetration into the barrel

The temperatures attained by different parts of a gun barrel are of interest in the problem
of gun erosion, and a selection of the many temperature distributions, obtained in the course
of this investigation, is given here.

The following table gives, for the three different guns, the surface temperature of the
barrel at the commencement of rifling (x,), at various times up to ejection :—

Surface temperatures at commencement of rifling in °C.

Two- 25.
pounder | pounder 8-inch gun, Mark VIII
t model
(millisec.)
A(c) B C(a) C(b) C(c) C(d)
0 15 15 15 15 15 15
1 311 148 — — — —
2 939 423 90 72 88 96
3 1158 566 — — — —
4 1052 561 359 243 297 286
5 920 512 — — J— -
6 _ 463 749 518 590 510
7 — 422 — — — —
8 — -— 1012 768 818 669
10 — — 1073 896 898 723
12 — — 1037 920 836 712
16 — — 901 846 784 638
20 — —- 781 750 686 565

The next table shows the variation in surface temperature with position along the barrel,
and with time, for the 8-inch gun, Mark VIII with charge weight 29-484 kgm. [case C(a)] :—

* This implies that the loss in efficiency is approximately inversely proportional to 4/C, since the total
energy is proportional to C ; this and the result given in the next paragraph are interesting verifications of the
law given in Section 8.18 which was determined empirically from firings.
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Surface temperatures in °C.

x (cm.) 90 (comr:feg::iment 229 293 505
of rifling)
t (millisec.)

0 15 15

2 64 90

4 244 359

6 520 749 15

8 724 1012 863 15
10 783 1073 1036 904
12 763 1037 1016 967 15
14 717 970 962 938 689
16 666 901 893 874 727
18 619 837 831 820 710
20 577 781 774 762 677

In general, the highest inner-surface temperatures occur at the commencement of rifling,
as is illustrated by the above table, and there is a considerable variation from gun to gun. In
particular, the 25-pounder, which is a low-velocity gun, has a very low maximum temperature,
less than 600°C. The highest surface temperature obtained was about 1160°C. for the
two-pounder model ; this is well below the melting temperature of steel (about 1500°C.).

The next table gives an example of the temperature distribution inside the barrel, for the
8-inch gun, Mark VIII, charge weight 29-484 kgm., at about the time when the maximum
inner-surface temperature is attained :—

Temperatures inside the barrel at the commencement of rifling (x,)
Case C(a) ¢ = 10 millisec.

z (cm.) ‘ 0 0-01 0-02 0-04

0-06 ’ 0-08 0-10

Temperature (°C) 1073 732 451 139

42 ‘ 20 16

The temperature always falls off very rapidly inside the barrel, and the penetration of

heat during the firing of a single shot is quite small—about one millimetre in this particular
example.
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Ballistics Committee, iii

Band engraving, losses due to, 72 ; method of
allowing for, 115

Band pressure, 213

Blending of propellant, 173

Bomb calorimeter, 7, 16, 17

Bore resistance, methods of allowing for, 115

Boulengé chronograph, 3, 148 ; uaccuracy of,
150 ; disjunction of, 150

Breaks in ballistics, 180

Breech pressure, 75

Burning, theory of 23-39 (Chapter III) ; applica-
tion of theory to cordite, 35 ; by parallel
layers, 2, 40 ; laws of, 2, 40 ; rate of, 4, 37,
40, 55, 62, 115

Burning surface, variation of, 52

Calorific value, of propellants, 7, 17, 216
Cam.zl;xl'idzgg4 Mathematical Laboratory, 128,
’

Charbonnier’'s form function, 65, 103

Charge temperature, effect of wvariations on
muzzle velocity, 134

Chronograph, Boulengé, 148 ; accuracy of, 150 ;
disjunction of, 150

Chronometer, photoelectric counter, 148, 151,
154 ; accuracy of, 157 ; complete unit, 155 ;
electric signal of, 153

Closed vessel, 2, 3, 7, 53-66 (Chapter V) ; descrip-
tion of, 160 ; experimental work in, 160 ;
firing a round in, 162

Collected formulae, in Hunt-Hinds solution, 99

Combination of variations, at cordite proof, 203

Combustion, at constant volume, 5366 (Chapter
V) ; phenomena in closed vessel, 55

Comparative ballistics, 177

Composite charges, 135

Conditioning round, 174

Conduction of heat through barrel, 280 ;
effect of discontinuity in boundary conditions,
282 ; empirical formulae for, 288 ; general
remarks on, 280 ; heat loss to barrel, 283 ;
numerical applications, 284 ; numerical cal-
culation of tcmperatures, 283 ; solution of
conduction equation, 280

Conservation of energy, 67

Control charts, 179, 182, 191, 200, 205

Conversion of observed to muzzle velocity,
159

Cordite, compressibility of, 37 ; thermal con-
ductivity of, 36, 38

Correlation, of two or more variables, 191, 200

Co-volume of propellant gases, 3, 18, 22;
correction for maximum pressure in Hunt-
Hinds solution, 92 ; corrections for in classical
theorvy of nozzles, 240 ; experimental deter-
mination of, 53

Crusher, gauge, 3, 163 ; pressures 98

Current standardisation, 177

Cylindrical propellants, form function for, 41

Degrees of freedom, (statistical), 192
Degressive shape, of propellant, 41



Density of loading, in closed vessel, 57 ; in gun, 214

Differences in methods, of solution of ballistic
equations, 102

Differential analyser, use in solution for non-
linear burning with simplified equations, 126 ;
with general equations, 128

Diffusion, effect on rate of burning, 26, 38

Disjunction time, of Boulengé chronograph, 150

Dissociation, of products of explosion, 12, 14

Driving-band pressure, 213

Electric signal, of P.C.C., 153

Empirical corrections, for band engraving and
bore resistance, 115 ; for variations iny, 115 ;
in Coppocks’ solution, 112 ; in Crow’s solution,
110 ; in general, 115 ; in Goldie’s solution, 115

Empirical formulae, for heat loss to barrel, 288

Energy equation, 67-73 (Chapter VI)

Energy, kinetic of gases, 70, 79 ; kinetic of recoil,
71 ; losses in Hunt-Hinds solution, 96 ; lost
in band-engraving and friction, 72 ; lost to
gun, 71 ; released by propellant, 67 ; rotational,
72 ; secondary losses in gun, 70 ; strain, 71

Equation, of energy, 67-73 (Chapter VI); of
motion, 74-81 (Chapter VII)

Equation of state, of propellant gases, 18 ; table
of coefficients B and C, 221

Equilibrium constants, 11; table of, 219 ;
table of coefficients AB and $AC, 202

Equivalent full charge (E.F.C.), 176

Erosion, of cordite, 38, 64 ; of gun, 4

Experimental intermal ballistics, 208-213
(Chapter XVI); experiments in Germany,
209 ; in U.K,, 208 ; in U.S.A,, 211

Experiments, in closed vessels, 53 ; to determine
force constant and co-volume, 53 ; to determine
rate of burning, 58

Explosion, thermochemistry of, 8-22 (Chapter II) ;
pressure of, 17 ; products of, 10 ; temperature
of, 13, 19, 21

F-test, 193 ; table for, 235

Fixed charge zone, 205

Flake, form function for, 44

Flame theory, in gas, 26 ; table of functions for
solution of equation, 225

Flash, 4, 5

Force constant, 17, 22 ; experimental deter-
mination of, 53

Form coefficient, 51, 65

Form function, 40-52 (Chapter IV); approxi-
mation for multitube, 50 ; Charbonnier’s, 65 ;
for cylindrical, 41 ; for French propellants, 66 ;
for multitube, 44 ; for ribbon, 43 ; for slotted
tube, 42 ; for square flake, 44 ; for tubular, 41

Freezing temperature, 17

French propellants, form function for, 66

Friction pressure gradient, 74, 76

Frictional energy losses, 72

Gas composition, change with temperature, 16 ;
internal energy of, 13

Gauge, crusher, 163 ; piezo-electric, 164 ; spring,
168 ; strain, 168

German propellants, 6

Gun-to-gun variations, 175
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Heat loss, effect on rate of burning, 60 ; in closed
vessel, 54, 59 ; in gun, 71 ; calculation of,
283, measurement of, 212

Heat of formation, of products of explosion, 15,
218 ; of propellant constituents, 9, 217 ; of
solid propellant, 10, 218

Heating of barrel by gases, 271-290 (Appendix
I1) ; assumptions in theory, 272 ; boundary-
laver momentum integral, 275 ; boundary-
layer thickness, 278 ; calculation of heat-
transmission coefhcient, 278 ; conduction of
heat through barrel, 280 ; general remarks,
272 ; heat transmission coefficients, 276 ; state
of gases, 272 ; velocity distribution across
boundary-layer, 274

Heats, ratio of specific, 19

High-low pressure gun, 261 ; equations after
all-burnt, 269 ; equations up to all-burnt,
264 ; summary of working formulae, 269

Howitzers, interpolation of adjusted charge weights
for, 139

Hunt-Hinds analysis of closed vessel records,
61

Hunt-Hinds system of internal ballistics,
82-101 (Chapter VIII) ; after all-burnt, 87 ;
all-burnt, 86 ; collected formulae, 99 ; co-
volume correction for maximum pressure, 92 ;
energy losses, 96 ; expressions for £ and T,
85 ; initial conditions, 83 ; maximum pressure,
88 ; muzzle velocity when charge is not all
bumnt in bore, 95 ; particular case of 0’=0,
87, 90 ; practical applications, 97 ; pressure-
space curve, 88, 95 ; reduction of equations,
82 ; solution of equations during burning, 83 ;
solution when B is small, 89 ; tables of functions
required in solution, 227-231 ; tabular solution,
for all-burnt, 94 ; for maximum pressure, 90,
for muzzle velocity, 93

Hymans' effect, 176, 203

I.C.I. Ltd., 5

Ignition, 4, 40, 51, 81 ; in closed vessel, 59 ;
temperature of, 40

Inertia pressure gradient, 74

Initial conditions, for gun equations, 83

Interferometer, use of, 211

Internal energy, of gases, 13 ; table of coefficients,
E,, E,, 223

Interpolation of adjusted charge weights, for
howitzers, 139

Kinetic epnergy, of gases, 70, 79 ; of recoil, 71
Krupps, 144, 209

Lagrange's ballistic problem, 74

Le Duc system of ballistics, 141

Leaking guns, theory of, 237-270 (Appendix 1) ;
calculation of recoil momentum, 260 ; equations
of internal ballistics, 242 ; equivalent non-
leaking ballistic problem, 246 ; high-low
pressure gun, 261 ; numerical integration of
equations, 249 ; recoillessness, 259 ; solution
after all-burnt, 254 ; solution with linear rate
of burning, 250 ; smooth-bore mortar, 256 ;
worn gun, 257

Linear rate of burning, solution of equations for,
82-101 (Chapter VIII) ; other solutions, 102-
116 (Chapter IX)

Loading density, n closed vessel, 57; in gun, 214
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Maker-to-maker variations, 175

Master standardisation, 176

Maximum pressure, approximate value by Hunt-
Hinds solution, 88, 90, when 6’=0, 89 ; by
Coppock’s solution, 111 ; by Crow’s method,
109 ; by Goldie’s solution 113 ; by Sugot's
solution 105 ; condition for true, 91 ; co-
volume correction for, 92 ; for non-linear
buming and constant burning surface, 120 ;
with simplified energy equation, 122, with
general form function, 124 ; tabular solution, 90

Mean deviation, 201

Mea_;lggas pressure, 75 ; and equation of motion,

Military College of Science, iv, 82

Molecular heats, table of, 220

Monomial formulae, for variations in loading
conditions, 137

Mortar, gas leakage in, 256

Motion, equation of, 74-81 (Chapter VII)

Multitubular propellants, form function for, 44 ;
erosion of, 64

Muzzle velocity, by Coppock’s solution, 107 ;
by Crow’s method, 110 ; by Goldie's solution,
114 ; by Hunt-Hinds method, 88, 93 ; by
Sugot's solution, 107 ; conversion from ob-
served velocity, 159 ; for non-linear burning
and constant burning surface, 121, with
simplified energy equation, 122, with general
form function, 124 ; tabular solution, 93 ;
when charge is not all burnt in bore, 95

Nobel and Abel’s law, 53

Nomenclature of propellants, 6

Nominal charge weight, 183

Non-linear rate of burning, solution for, 117-133
(Chapter X); for constant buming surface,
118, all-burnt, 120, maximum pressure, 120,
velocity, 120, with simplified energy equation,
121 ; for general form function, 122 ; for
general form function and simplified energy
equation, 124 ; reduced equations, 117 ;
solution by differential analyser, 126, 128

Notation, summary of, 214

Nozzles, classical theory of, 238 ; co-volume
corrections, 240 ; thrust on, 241

Numerical integration, of ballistic equations for
non-linear burning, 119 ; by differential
analyser, 126 ; by step-by-step process, 123 ;
of equations for leaking gun, 249

Occasion-to-occasion variations, 175
QOunces and drams, table of as decimals of a
pound, 232

Parallel layers, burning by, 2, 40

Photo-electric counter chronograph, 148, 1351 ;
accuracy of, 157 ; complete unit, 155 ; electric
signal of, 153

Piezo-electric pressure gauge, 164

Population (statistical), 191

Prandtl number, 276

Pressure, breech, 75 ; crusher, 78, 98 ; driving
band, 213 ; explosion, 17 ; index, 56 ; mean,
75, 79 ; measurements in closed vessel and
gun, 160-171 (Chapter XIII) ; shot, 74, 210 ;
shot-start, 3, 72, 83

Pressure barrel, 176

Pressure gradient, 69, 74, 76 ; experimental
values of, 209, 210 ; frictional, 76 ; inertia,
74 ; total, 78

Pressure-space curve, in Hunt-Hinds solution,
88 ; when B is small, 95 ; when 6'==0, 89

Pressure-time curve, in closed vessel, 57

Progressive shape, of propellant, 41

Proof of propellants, difficulty of, 174 ; methods
of, 175 ; object of 173 ; of new nature, 183 ;
special procedure, 183, specimen forms, 185

Propellant proof, 173-189 (Chapter XIV) ;
difficulty of, 174 ; methods of, 175 ; object of,
173 ; of new nature, 183 ; special procedure,
183 ; specimen forms, 185

Propellants, 1-7 (Chapter I); American, 5 :
atomic composition of, 10, 218 ; atomic
composition of constituents, 8, 217 ; calorific
value of, 7, 17, 216 ; composition and physical
properties of, 7, 216 ; co-volume of, 18, 22,
53, 224 ; double base, 4, 5 ; early developments
of, 1 ; effect of co-volume on rate of burning,
38 ; effect of moisture and solvent content, 22 ;
equation of state, 18 ; flashless, 4 ; force
constant of, 17, 53 ; German, 6 ; heats of
formation of, 10, 218 ; heats of formation of
constituents, 9, 217 ; later developments of,
2 ; modern developments of, 4 ; nomenclature,
6 : quickness of, 65 ; ratio of specific heats
of, 19, 21; requirements of modemn, 3;
single base, 4, 5 ; stabilisers for, 4 ; stability
of, 4 ; tables, 216, 224, 226, 231 ; thermo-
chemistry of, 8-22 (Chapter II); types in
use, 5 ; vivacity of, 65

Propellants, theory of burning of, 23-39
(Chapter III); applications to buming of
cordite, 35 ; surface theories, 24 ; vapour-
phase theories, 25

Quality control, 191
Quickness, of propellants, 65

Range-table muzzle velocity, 183

Rate of burning, of propellants, 4, 55 ; coefficient,
56 ; comparison between experimental and
theoretical, 37 ; experimental determination
of constants, 38; index, 56 ; method of allowing
for non-linearity, 115 ; numerical values for
;c;nstams, 62 ; table of indices and coefhicients,

26

Rate of pressure variation, recording of, 172

Reaction zone, propagation of 27 ; approximate
solution in special case, 30 ; equations for, 29

Recoil measurements, 212

Recoil momentum, in recoilless gun, 260

Recoilless gun, 259

Reduction of ballistic equations, 82 ; for non-
linear rate of burning, 117

Regression analysis, 191, 195

Résal’s equation, development of, 69 ; modified
form of, 72 '

Resistance of bore, equations for numerical
solution, 132 ; experimental values of, 209,
210, 213 ; method of allowing for, 115

Reynold’s number, of gas flow in gun, 272

Rheinmetall Borsig, 146

Ribbon, form function for, 43

Runge’s numerical solution, of ballistic equations,
119



Sample, (statistical), 191 ; mean, 192

Scientific Advisory Council, iii, 90

Secondary energy losses, in guns, 70

Shot-start pressure, 3, 72, 83

Significance, of differences,
234, 235

Similitudes, ballistic, 143 ; compounded guns,
145 ; dynamic similarity, 144 ; geometric
similarity, 144 ; reduced dimensions, 146

Size, of propellant, 40, 51

Slivers, 44

Slotted tube, form function for, 42

Solution of ballistic equations, for linear rate
of burning ; 82-101 (Chapter VIII) ; during
burning, 83 ; particular case of 6'=0, 90 ;
when B is small, 89 ; by Coppock, 111 ; by
Crow, 108 ; by Goldie, 112 ; by Le Duc, 141 ;
by Sugot, 103 ; for non-linear rate of burning,
117-133 (Chapter X) ; with constant burning
surface, 118 ; with differential analyser, 126,
128 ; with general form function, 122

Solvent content, of propellants, effect on force
constant, 22 ; effect on rate of burning, 63

Space-time curve, experimental determination of,
211

Specific heats, ratio of for propellant gases, 19, 21

Specification charge weights, 183

Spring gauge, 168

Square flake, form function for, 44

Standard charge zone, 205

Standard deviation, 192

Standard gun, 175

State, equation of, 18

Statistical methods, applications to internal
ballistics, 190-207 (Chapter XV) ; applications
to routine problems, 204, 207 ; types of
problem which can be solved, 190

Statistical terms, definitions, of, 191

Step-by-step integration, of ballistic equations,
132

Storage temperature, 4 ; effect on rate of burning
and force constant, 63

Strain energy, of gun, 71

Strain-gauge pressure head, 168

Sugot’s method, of solution of ballistic equations,
103 ; functions, 107

Summary of notation, 214

Surface temperature, of barrel, 289

190 ; tests, 193,

T-test, 194 ; table for, 234

Tables, 215-236 ; additive constants of propellant
constituents, 224 ; atomic compositions and
heats of formation of propellant constituents,
217 ; atomic compositions and heats of forma-
tion of propellants, 218 ; ballistic functions for
NCT, 233 ; compositions and physical pro-
perties of propellants, 216 ; equation of state
coefficients B and C, 221; equilibrium

INDEX
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constants, 219, 222 ; functions for Hunt-Hinds
solution, 227-231 ; functions for solution of
flame equation, 225 ; heats of formation of
products of explosion, 218 ; internal energy
coefficients E;, E, 223 ; mean molecular
heats, 220 ; ounces and drams as decimals of
a pound, 232 ; propellant constants, 224 ;
propellant data in British units, 231 ; rate of
burning indices and coefficients, 226 ;

signi-

ficance test, 234 ; summary, 215 ; variance
tests, 235

Tabular solution, for Goldie's solution, 114 ;
for Hunt-Hinds solution, 90, 93, 94 : for
Sugot's solution, 107

Taylor Model Basin, 211

Temperature, adiabatic flame, 8, 13 ; at barrel

surface, 289 ; freezing, 17 ; in barrel wall,
283, 289 ; in closed vessel, 59 ; in gun, 211 ;
of explosion, 13 ; of ignition, 40 ; of storage,
4, 63 ; touch-off, 25

Tests of significance, 193

Thermal conductivity, of cordite, 36 ;
on rate of burning, 38

Thermochemistry, of propellant explosions, 8-22
(Chapter 1I)

Thrust, on nozzle, 241

Time of burning, in closed vessel, 57

Tolerance, in proof shot weight, 203

Tubular propellants, erosion of, 64 ;
function for, 41 ; irrcgularity of, 51

effect

form

Units, in Hunt-Hinds solution, 97

Vapour-phase, theories of burning, 25

Variance, 192

Variations, in charge temperature, 134 ; in effective
chamber capacity, 203 ; in initial conditions
by Sugot's method, 108 ; in muzzle velocity
measurements, 202 ; in propellant web size,
203 ; in vy, 115; monomial formulae for,
137 ; nature of ballistic, 174 ; of muzzle
velocity at ballistic firings, 201

Velocity measurement, 148-159 (Chapter XII)

Velocity of adjustment, 177, 179

Vickers-Armstrongs, Ltd., iii, iv

Vivacity, of propellant, 65

, v, 138

Warmer round, 174

Water content, of propellant, effect on force
constant, 22 ; effect on rate of burning, 63

Water-gas reaction, 11

Waves, pressure, 80

Weapon Research Committee, iii

Wear curves, 182

Web, for multitubular propellants, 44

Work, done in expansion in gun, 68

Worn gun, ballistics of, 257
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